

Improving POP-C++ for

HPC
diploma project

Barras Frédéric

Responsible interns : Pierre Kuonen

François Kilchoer

Jean-François Roche

Guilherme Peretti Pezzi

Responsible externs : Barney Maccabe (UNM)

Rolf Riesen (Sandia Labs)

Tuan Anh Nguyen (HCMUT)

Expert : Peter Kropf (UNI-NE)

Student : Frédéric Barras

Date : 09/06/2007 to 11/14/2007

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

2 Report Barras Frédéric

SUMMARY

SUMMARY .. 2

GENERAL INTRODUCTION .. 6

1. INTRODUCTION {COMMON} .. 6

1.1. Technologies used ... 6

1.1.1. Ubuntu ... 6

1.1.2. POP-C++ ... 6

1.1.3. MPI .. 6

1.1.4. Computer cluster / GRID ... 6

1.2. Objectives .. 7

1.3. Presentation of the document .. 7

1.4. Deliverables ... 8

COMPARISON BETWEEN POP-C++ AND MPI .. 9

1. INTRODUCTION {COMMON} .. 9

2. ANALYSIS ... 9

2.1. POP-C++ Runtime {common} .. 9

2.2. POP-C++ Object creation ... 10

2.3. The MPI standard {common}... 12

2.3.1. MPI-processes ... 12

2.3.2. SPMD ... 13

2.4. MPI Initialization .. 13

2.4.1. MPI_COMM_SPAWN ... 13

2.5. Scenario Test ... 14

2.5.1. POP-C++ scenario test ... 14

2.5.2. MPI Scenario test ... 17

2.5.3. Differences between the scenarios ... 18

3. IMPLEMENTATION ... 19

3.1. POP-C++ ... 19

3.2. MPI .. 20

4. TESTS .. 20

4.1. Results ... 21

4.1.1. Expected .. 21

4.1.2. Measured... 25

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

3 Report Barras Frédéric

5. CONCLUSION ... 32

5.1. Encountered problems .. 32

5.1.1. Cluster configuration ... 32

5.1.2. Cluster hours ... 32

5.1.3. POP-C++ static object array creation ... 32

5.2. About the measured tests ... 32

5.2.1. POP-C++ with and without Jobmanager ... 32

5.2.2. Standard deviation of the total initialization .. 33

5.3. Personal ... 34

COLLECTIVE COMMUNICATION IN POP-C++ .. 35

1. INTRODUCTION {COMMON} .. 35

1.1. Introduction to collective communication in POP-C++ without changing the parser 35

1.2. Templates in C++ ... 35

1.3. Collective communication in MPI{common} ... 36

1.4. Collective communication in POP-C++{common} ... 37

2. ANALYSIS ... 39

2.1. Independent parser library .. 39

2.1.1. Use Case Diagram .. 41

2.1.2. Sequence diagrams ... 42

2.1.3. Class diagram ... 51

3. CONCEPTION ... 51

3.1. Version without modification of the parser .. 51

3.1.1. Type of the stored parallel objects .. 52

3.1.2. Type of the parameters ... 54

3.1.3. Reflection in POP-C++ .. 54

4. IMPLEMENTATION ... 55

4.1. Test .. 55

4.2. Actual state of development ... 55

4.2.1. Installation ... 55

4.2.2. Utilization .. 56

4.1. Limitations ... 57

5. CONCLUSION ... 58

5.1. Encountered problems .. 58

5.1.1. Reflection in C++ .. 58

5.2. Possible improvements ... 61

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

4 Report Barras Frédéric

5.3. Personal conclusion ... 62

GENERAL CONCLUSION ... 63

1. PERSONAL .. 63

2. PLANNING ... 63

3. THANKS{COMMON} ... 63

APPENDIX ... 65

1. DEFINITIONS .. 65

2. REFERENCES .. 67

3. LINKS ... 68

4. FIGURES ... 68

5. TABLES ... 69

6. CD CONTENT ... 70

7. PLANNING ... 70

8. SOURCES .. 70

8.1. runTests ... 70

8.2. startBenchmarks .. 71

8.3. myObject.ph .. 72

8.4. myObject.cc ... 72

8.5. Main.cc .. 72

8.6. Mainstatic.c ... 73

8.7. Maindynamic.c .. 74

8.8. Child.c .. 74

8.9. Code source for total initialization .. 75

8.9.1. Objectpop.ph ... 75

8.9.2. Objectpop.cc .. 75

8.9.3. Mainpop.cc .. 76

8.9.4. Mainstatic.c ... 76

8.9.5. Maindynamic.c .. 77

8.9.6. Childdynamic.c .. 77

8.10. Source code part 2 ... 77

8.10.1. Copydir .. 77

8.10.2. modifyFiles .. 78

8.10.3. A.cpp .. 79

8.10.4. A.hpp ... 80

8.10.5. B.cpp .. 80

8.10.6. B.hpp ... 81

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

5 Report Barras Frédéric

8.10.7. A_reflection.cpp .. 81

8.10.8. A_reflection.hpp .. 82

8.10.9. mainAB.cpp.. 82

8.10.10. main.cpp .. 83

8.10.11. POPGroup.cpp ... 86

8.10.12. POPGroup.hpp ... 93

8.10.13. RankException.hpp .. 94

8.10.14. Result of a POPGroup containing A objects .. 95

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

6 Report Barras Frédéric

General Introduction

1. Introduction {common}

In this final project, four different tasks figure in our goal specification. The work has to be split in

two distinct projects between the two students. The goal of this project is to improve the language

POP-C++ for High Performance Computing (HPC). For more details, please refer to section 1.2

Objectives. This project lasts 9 weeks, and is realized at the University Of New Mexico (UNM) in

Albuquerque, USA.

1.1. Technologies used

This is a brief description of the different technologies used during the project.

1.1.1. Ubuntu

Ubuntu is a distribution of the free operation system Linux and is based on Debian Linux. We use the

version 6.10, called Edgy Eft, on our notebooks. At this time (September 2007), the most recent

version is 7.04. This version is actually not compatible with our notebooks. After research on the

internet, it seems that it is a common problem that Ubuntu 7.04 has difficulties with hardware

detection.

1.1.2. POP-C++

POP-C++ is a programming language which is derived from C++. It has been developed by the

GridGroup at the EIA-FR. Its main objective is to allow programmers to write object oriented

applications which are able to run objects on different workstations connected by a network. These

objects are distributed automatically during the execution of an application. At the time of this

project, POP-C++ is running only on workstations with a Unix/Linux operating system.

The POP-C++ environment includes two main parts. First of all, a precompiler which is able to parse

and read a POP-C++ code to generate pure C++ code. This code is now ready to be compiled with a

standard C++ compiler. Secondly, the runtime: an environment which is necessary to run the parallel

distributed objects.

1.1.3. MPI

MPI (Message passing interface) is a standard, describing message passing in parallel computing on a

distributed computer system. The programming interface specifies a pool of operations and their

semantic.

The implementation of MPI used during this project is MPICH2 which implements the MPI-2.1

standard. It is delivered with C/C++ and Fortran 77 resp. Fortran 90 compilers. The programmer can

choose to write programs in one of these languages. Thorough this document when talking about

MPI, it always means this standard and this implementation.

1.1.4. Computer cluster / GRID

A computer cluster is a group of connected computers working together. They are commonly

connected to each other by a fast local area network, allowing them to share tasks though they can

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

7 Report Barras Frédéric

be viewed as a single computer. Clusters are used for different tasks (e.g. Load-balancing). We will

use a cluster for high performance computing. Programs which are designed to run on such a cluster

(e.g. MPI-programs) split the main problem in different smaller tasks to distribute them on different

nodes (processors) on the cluster. These tasks are computed in parallel which increases the

performance.

The main differences between a cluster and a GRID:

• GRID computing is dedicated to work on computers that can be geographically separated

• Computers on a GRID are quite autonomous and are not dedicated to accomplish only

subtasks on this net

1.2. Objectives

This project will help improve the POP-C++ programming language in high performance computing.

The first step will be the comparison with the MPI programming language. This will help us to find

the weak points of POP-C++. The second step is to add global communication to POP-C++. Global

communication makes it possible for remote objects to communicate by broadcasting (point-to-

multipoint message passing). The next step will be the development of a convenient method to

create arrays of parallel objects using different personalized constructors. Until now, only the default

constructor is used. The last step in the project is the validation of the asynchronous object creation

in the most recent version of POP-C++.

In our planning, we must include the details about the two first parts. If we manage to finish them

before the end of the project, the rest of the time is used for the two last tasks.

1.3. Presentation of the document

This document is divided in two different sub reports, one for each task we have to achieve. The first

part is about the comparison between POP-C++ and MPI (starting at page 9), and the second is about

collective methods in POP-C++ (starting at page 35).

Each common part contains {common} in its title.

- General introduction: Explanation of the objectives of this project and

different technologies

- Part 1, Comparison between POP-

C++ and MPI:

First sub report

o Introduction: Explanation of the subject

o Analysis: Analysis of the initialization of POP-C++ and MPI

o Implementation: Method used to measure the initialization

o Test: Prediction model and result of the tests on the cluster,

comparison

o Conclusion: Conclusion about the measurements, explanation

about the differences

- Part2 , collective communications in

POP-C++:

Second sub report

o Introduction: Explanation of the subject

o Analysis: Analysis of the possibility to add collective

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

8 Report Barras Frédéric

communication to POP-C++ without changing the

parser

o Conception: Explanation about the way to use reflection and the

functionment of the collective methods

o Implementation: Current state of the project, explanation of the

implemented parts

o Conclusion: Conclusion about the library, encountered problems

- General conclusion: Personal conclusion, planning discussion, thanks

- Appendix: Figure table, links, source codes.

1.4. Deliverables

At the end of our project, we will provide a CD with all documentation, including:

• a slide-show

• external project source

• source code

• the report

• the website

During this project, all documentation is stored on our website [8].

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

9 Report Barras Frédéric

Comparison between POP-C++ and MPI

1. Introduction {common}

In this part of the project, we have to compare POP-C++ to another distributed programming

interface called MPI implemented in the library OpenMPI. We have to define a test scenario to

measure the differences between POP-C++ and MPI in terms of performance. To do this, we will have

to write equal programs in both languages and run them on a cluster under identical conditions. The

result will permit us to determine which language is slower in which part of the program and where

their weaknesses are. This kind of comparison is called Benchmarking.

2. Analysis

2.1. POP-C++ Runtime {common}

This is only a short description of the POP-C++ runtime. Complete description is available in: “WSDL

with POP-C++”. [2]

The POP-C++ Runtime contains the following classes:

a) Interfaces : the local representation of a remote object

b) Brokers : make the translation between network messages and method call on the remote

object

c) Comboxes : contain the socket for the network communication

d) JobManagers : manage the resources and placement of remote objects

e) Buffers : pack/unpack the data which have to be sent/received

f) Objects: are the real remote object, always bound with a buffer on the remote side, and an

interface on the local side.

Every remote object has an interface on the local runtime, which has the same methods with the

same signatures. Seen from the local runtime, calling a method on a remote object or on a local

object makes no difference. When the interface receives the method call, it sends this call, using the

combox and the buffer, through the network to the remote object. The broker attached to the

remote object receives the packet, and translates it into a method call for the object. It then sends

back the result, if necessary.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

10 Report Barras Frédéric

Figure 1 – POP-C++ Class Diagram

This diagram shows the different classes of the POP-C++ runtime, on left, are the classes used

exclusively on the local side, on the right the classes used by the remote side, and in the middle, the

classes used by both local and remote part. MyObject is the object which has to be used as remote, it

also inherits from Interface. MyObjectBroker and MyParocObject are the remote part of our object.

The real implementation of the object is in MyParocObject.

2.2. POP-C++ Object creation

This is only a short description of the POP-C++ Object creation. A complete description is available in:

“WSDL with POP-C++”. [2]

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

11 Report Barras Frédéric

Figure 2 – Object creation in POP-C++

When a remote object is created, the following steps are made:

1) The Main creates a new interface for the desired object.

2) The interface creates its buffer and combox, and then will search for a machine for the

object, depending on the parameters provided with the Object Descriptor (the methods

added after the object constructor, for example Integer(int power)@{od.power(power);}; The

JobManager will try to find resources for those requirements.

3) The Job Manager will first ask the local POPC++ runtime, to see if it has the required

resources available, and, when the local system is not able to host the object, will seek on

other machines if the resources are available.

4) The JobManager returns the reference of the remote machine to the Interface which uses a

system call to start the executable of the object on the remote machine.

5) The remote JobManager will get the executable of the object from the described location. It

contains a combox, the object and its broker.

6) The interface is bound, through the comboxes, with the remote object (connect sockets), and

can then call methods on the remote object. The first method called is always the

constructor call.

If the job manager is not used, and the address from the remote host is determined by the

programmer, the interface itself will start the object on the remote side, and then bind it.

The method call of the constructor could already be taken as a method call, and is not really a part of

the object creation.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

12 Report Barras Frédéric

2.3. The MPI standard {common}

MPI uses the message passing paradigm to communicate in a distributed memory system (Figure 3 -

Distributed Memory Sytem[2]). Each memory entity is accessible only via its corresponding processor

(CPU). To communicate, processors use a network which connects them to each other. Messages can

be sent and received in different manners. For example, it can be passed in a blocking way, which is

very safe but slow, or in a non-blocking way, which can increase the performance of a program by

eliminating active waiting of the CPU.

Figure 3 - Distributed Memory Sytem[2]

Message passing is used to exchange data between processes. Process A sends a memory buffer

(data) of its application memory through the network to process B, which receives the message and

stores it into his application memory.

2.3.1. MPI-processes

It is important to understand the difference between a process (set of executable instructions) and a

processor (hardware)! More than one process can execute on the same processor but will

nevertheless communicate via message passing. MPI differentiates processes by their rank. Every

process is identified by a number going from 0 to N-1, where N is the number of processes running.

Every MPI-programmer has to be aware about issues related to concurrent computing. In an MPI-

application, there is usually more than one process running at the same time. They communicate

between each others in either a blocking or non blocking way. In case of inappropriate use of the

message passing routines provided by MPI, unexpected consequences may show up (e.g. Dead-lock

or data loss). Different communication events can take place during message passing:

• copying a message from application memory to system memory (send buffer)

• arrival of a message

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

13 Report Barras Frédéric

2.3.2. SPMD

Programming in MPI applies the SPMD (Single Program, Multiple Data) mechanism. This means that

the same program is running everywhere. To avoid that every process executes exactly the same

instructions, they have to be differentiated in the program by their rank. A model which is very often

used is to differentiate only process 0 from the rest of the processes.

if rank==0
 send(message)
else
 receive(message)

2.4. MPI Initialization

This function must be called before any other MPI routine is called. It initializes the MPI environment.

The C version of the function requires the argc and argv arguments provided to main(). This

function initializes the system able to create MPI error messages.

When a process calls MPI_Init(), the following operations occur:

- MPI_Init() opens a local socket with a port number, and sends this information to the parallel

operating environment (POE).

- It receives then from the POE the list of addresses and ports already registered, and

establishes a connection with each of them.

2.4.1. MPI_COMM_SPAWN

int MPI_Comm_spawn(char *command, char *argv[], int maxprocs,
 MPI_Info info, int root, MPI_Comm comm,
 MPI_Comm *intercomm, int array_of_errcodes[])

MPI_COMM_SPAWN is described in version 2.0 of MPI. This command permits the user to

dynamically generate processes after the MPI_Init() has been called. Here is a description of the

parameters of MPI_Comm_Spawn():

Command : Name of program to be spawned; must be an MPI program, which calls

MPI_Init().

Argv : Arguments given to the command

Maxprocs : Maximum number of processes to start. When less than Maxprocs

processes are started, an error code is returned

Info : set of key-value pairs telling the runtime system where and how to start

the processes

Root : Rank of the process which will spawn these new processes

Comm : Intracommunicator which will contain these new processes. (For

example, we can create a MPI_COMM_NEWWORLD)

Intercom : Output parameter. Intercommunicator between the Intracommunicator

Comm and the one from the current process

Array_of_errcodes :

Output parameter. One code per process created. Indicate whether the

spawn is successful or not for each process.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

14 Report Barras Frédéric

The spawned processes are referred to as children. They have their own MPI_COMM_WORLD,

different from their parents’. MPI_Comm_spawn() doesn’t return until all child have called MPI_Init.

And MPI_Init in the children does not return until all the parents have called MPI_Comm_spawn().

Once all have made their calls, they receive the Intercommunicator, to communicate between

children and parent processes.

2.5. Scenario Test

I will compare the creation of objects on POP-C++ and the distribution of processes in MPI. The

programs will not be complicated, they will just create processes/objects, and measure the time used

to do it.

The following parameters will change during the test:

- Number of nodes: 1,2,4,6,8,10,12,14,16.

- Number of objects/processes created: 1 to 16, one per node each time.

The size of the data in the objects / processes will not change during this test; we don’t want to test

data sending between the local object /first process and their children.

I will use the following programs

- A POP-C++ program which creates objects without JobManager

- A POP-C++ program which creates objects with JobManager

- An MPI program which is launched with a parameter to determine the number of processes

- An MPI program which dynamically spawns processes on the different nodes

2.5.1. POP-C++ scenario test

Two implementations of POP-C++ are tested, one with the JobManager, and one with a static URL in

the constructor parameters. It will help me to determine the weight of the JobManager in the POP-

C++ runtime by comparing both programs. The version without Job Manager will also be used to be

compared with MPI. Different timestamps are used during the object creation of POP-C++.

Here are some light versions of the sequence diagram from the creation of an object, with and

without the Job manager. The local object is in green, the remote one in red, and the timestamps in

blue.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

15 Report Barras Frédéric

Figure 4 - simplified sequence diagram of object creation without Job Manager

Here are the positions of the timestamps:

- Timestamp 1: at the beginning of the Allocate method, will be considered as time t0=0.

- Timestamp 2: End of the local first-part initialization, just before sending the command to the

remote node.

- Timestamp 3: Just after having received the response from the remote node, that the

necessary objects were created.

- Timestamp 4: End of the Allocate method, just before sending the _Constructor method

message.

This is the simplified diagram of the object creation with the JobManager.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

16 Report Barras Frédéric

Figure 5 - simplified sequence diagram of object creation with Job Manager

Here are the positions of the timestamps:

- Timestamp 1: at the beginning of the Allocate method, will be considered as time t0=0.

- Timestamp 2: Begin of the ExecOjb method in the JobManager, where it is doing its job: find

a place which has the right properties to create the object.

- Timestamp 3: End of the ExecOjb method, to determine the time used by the JobManager.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

17 Report Barras Frédéric

- Timestamp 4: End of the Allocate method, just before sending the _Constructor method

message.

I need to have the timestamp 1 and 4 in the same method, to allow me to compare their values. The

biggest usable method was Allocate() in Interface.cc.

The biggest difference between these two versions of the POP-C++ program will be at timestamp 3.

With the job manager, it will take a different time to initialize the objects and find an appropriate

remote location, which corresponds to the constructor conditions of the object.

The POP-C++ Programs will follow this sequence of methods:

Main{
 For i=0, i<nb of objects to create, i++
 Start Timer ti
 Create Object i
 End Timer ti
 Add all timers
}

The timer in this snippet will be an “outside view” timer. The other timers described in the preceding

schemas will be implemented in the runtime and they will write their results on the screen after the

object is created. The time used to print the different values will be counted by the “outside view”

timer. This “outside view” timer is not usable for precise comparison with MPI, because it will

contain the work from the other timers, and the call method to the constructor of the object, what is

not really a part of the initialization. It is just here to give an idea of the total time needed for the

creation of a certain amount of objects.

The object used will be as small as possible; they will only have a class, a constructor and a destructor

method to make them as similar to processes as possible.

2.5.2. MPI Scenario test

The initialization of distributed programs in MPI follows this sequence:

1. Node allocation : first part of the mpirun command

2. Job Launch : second part of the mpirun command

3. Initialization: MPI_Init() method call

4. Dynamic processes creation: MPI_Comm_Spawn() method call

I don’t have any possibility to influence the mpirun command, so the measurements will be made on

the MPI_Init() method. The problem is that every process has its own clock, and they are not able to

synchronize them to do commands exactly at the same time.

The interesting time in this test is between the moments when the first process call MPI_Init(), until

the slowest one is ready to use a next function.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

18 Report Barras Frédéric

Figure 6 - MPI_Init() with several processes

This drawing shows the difficulty to have a precise value of the total time of all calls to MPI_Init().

Each process does not start exactly at the same time, and does not finish the call at the same time.

Thus, they could all have different laps of time until they can call their next method. To get the best

approaching time, I will use a program with the following structure:

Main static {
 Start timer
 MPI_Init()
 Stop timer
 Get the highest timer value between the processes
}

I will also take the “longest” call to MPI_Init(), which will be comparable to the real time I want to

obtain (In the picture, for example, it will be the time from the process 3).

The dynamic process creation is measured after the MPI_Init().

Main dynamic {
 MPI_Init()
 Start timer
 MPI_Comm_Spawn()
 Stop timer
}

This will be measured on the node 0, where the application is launched. We will first create only one

process. Each new process spawned will have a different node for location. This can be comparable

with POP-C++ object creation without JobManager more than the static MPI initialization, because

the nodes are not already known at the start of the application.

2.5.3. Differences between the scenarios

These two scenarios are not really equal, due to the structure of the runtimes, which are different.

The MPI_Init() call is made in a parallel way between the processes, and the remote object

invocation is made in a sequential way with the actual version of POP-C++. Because of this fact, POP-

C++ will surely take more time to finish its initialization.

Process 0 Process 1 Process 2 Process 3 Process 4

Call to MPI_Init :

End of MPI_Init :

Next function Start :

Time

line

Interesting

time

Legend :

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

19 Report Barras Frédéric

POP-C++ is an object oriented programming language, and MPI is a lower level language. An object

has more functionalities than a process. All the functions can be called with particular arguments;

their execution order is described with the keywords in the .ph file. For a process, the programmer

has to code all the logic and take care of the order of the sends and receives calls.

When calling the MPI_Init() function, a part of the remote process creation is already done by the

command mpiexec (or mpirun), for example the distribution of the processes on the different nodes.

The POP-C++ call has to find a node to store the remote object, and communicate with this node.

3. Implementation

I implemented a bash shell script to make the compilation, run and write the results automatically in

a file passed as parameter. It is runTests (appendix 8.1) and startBenchmarks (appendix 8.1). You

have to run runTests, which will call several times startBenchmarks with the right parameters.

It first compiles all the needed files, and then does the tests in this order:

- Empty main time for MPI

- Empty main time for POP-C++

- MPI static process creation

- MPI dynamic process creation

- POP-C++ object creation without JobManager

- POP-C++ object creation with JobManager

- Time Measure

The last test, Time Measure, is used to give a “human” value for the unit used to compare the

different programs. The units used are ticks; this is the number of instruction cycle used by the

processor. It varies from processor to processor. I took the number of ticks in 10 seconds, to have an

approximate value of 1 tick. The time in seconds which is then calculated cannot be taken as a

precise one, this is just an approximation. Another solution is to use a C function to get the “human”

time of a cycle of a processor, and then use it to translate the ticks. The file cycle.h contains the

declaration of these ticks, and the method to get the number of processor instruction cycles.

3.1. POP-C++

The modifications of the runtime are not shown here; I added timestamps which print the current

number of ticks elapsed on the screen.

MyObject.ph (appendix 8.3) file contains the minimum methods needed to create an object with the

JobManager (constructor asking for a power), and without JobManager (string indicating the location

where the object have to be created).

MyObject.cc (appendix 8.4) shows the body of the objects. The body could be empty, it prints just

here where the object was created, to verify that every object is correctly distributed. For the

measurements, this print is not compiled, they are commented out.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

20 Report Barras Frédéric

Main.cc (appendix 8.5) has to be called with two arguments: the number of objects which are to be

created and a Boolean to indicate whether we want to use the JobManager or not.

The test of the total initialization will be made with mainpop.cc (appendix 8.9.3) , which will use

objectpop.cc (appendix 8.9.2) and objectpop.ph (appendix 8.9.1). This application will just distribute

objects using JobManager or not, depending on the parameters given. The time to execute this

application will be measured with the shell command time.

3.2. MPI

mainstatic.c (appendix 8.6) uses the methods getticks() and elapsed() defined in cycle.h, which get

the clock ticks from the processor. The MPI_Reduce() method stores in globalMax the max value

between all localMax values from each process.

At the beginning of maindynamic.c (appendix 8.7), only process 0 is created. It then spawns the other

processes on different nodes of the cluster. The function MPI_Comm_spawn() has to be called with

arguments which describe the processes to be launched, the place where they have to be launched,

and a communicator, to make them reachable to the “parent” process.

Child.c (appendix 8.8) contains the code of the children processes of maindynamic.c (appendix 8.7).

They are as simple as possible, to avoid having time measured for anything else than their creation.

The test of the total initialization will be made with mainstatic.c (appendix 8.9.4) for the static

initialization with MPI_Init() and maindynamic.c (appendix 8.9.5) which will call childdynamic.c

(appendix 8.9.6). The time to execute these applications will be measured with the shell command

time.

4. Tests

The part which I have to test is the following: MPI initialization and object creation in POP-C++. The

tests were run on the PHOENIX Cluster from the UNM. Phoenix is a 16 node cluster for parallel

processing and InfiniBand research. Each node contains two 2.4 GHz AMD Opteron processors, 2 GB

of ram, an InfiniBand card, and gigabit ethernet networking. Only the head node,

phoenix.cs.unm.edu, contains disks. The other 15 nodes must be booted from the network. The

Phoenix rack also contains a 24 port InfiniBand switch, a remotely accessible console/terminal

switch, and a gigabit ethernet switch. Phoenix is using Fedora Core 4 as operating system.

We installed POP-C++ v1.1.1 and OpenMPI1.2.3 which support MPI_comm_spawn(). Both

implementations run on ethernet, to avoid having differences due to different underlying protocols.

The initialization tests are divided into three parts:

- The runtime launch: launch of the application until the program is in the main method.

- The objects/processes initialization: entry in the main method until end of creation of the

objects/processes.

- The total initialization: launch of the application until end of the creation of the

objects/processes.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

21 Report Barras Frédéric

4.1. Results

These results got obtained on the PHOENIX Cluster. The following things are to keep in mind when

observing the results:

- OS noise: the different O.S. operations, which took some CPU time.

- Hardware differences: some nodes do sometimes answer later than others.

- Other processes: we tried to have the most of the CPU time, but some processes are also

running, by the O.S. for example.

- OpenMPI is not well implemented on TCP, this results in slower results than on InfiniBand.

Here is the color code for the measurements and prediction graphs.

Subject Color

Prediction MPI runtime Violet - - -

Prediction MPI static Light Red - - -

Prediction MPI Dynamic Light Orange - - -

Prediction POP-C++ runtime Gray - - -

Prediction POP-C++ without JobManager Light Green - - -

Prediction POP-C++ with JobManager Light Blue - - -

Measure MPI runtime Dark Violet ―

Measure MPI static Red ―

Measure MPI Dynamic Orange ―

Measure POP-C++ runtime Black ―

Measure POP-C++ without JobManager Green ―

Measure POP-C++ with JobManager Blue ―

Tableau 1 - color code of the graphs

4.1.1. Expected

The MPI results will be the best ones, due to the fact that it’s a lower level language. The increase of

the number of processes will increase time in a logarithmic way. The distribution of processes on

nodes follows the logic of a binary tree. The first node starts two other nodes, which then start four

other nodes, which then start eight other nodes…

POP-C++ results will be much slower, due to the fact that POP-C++ doesn’t just start a process on a

remote node, it launches an object with all its methods ready to use, and the associated objects, like

the buffer, combox, and broker. It is a higher level language, and allows us to make more actions on

it than just send data. It has to pack the data, analyze the received frames and translate them into

method calls.

4.1.1.1. Prediction models

The following prediction models are based on first small tests made on the cluster. I will use the

values in the following table to create the formulas to determine the comportment of POP-C++ and

MPI. Y will be the necessary time of execution of the task; X will be the number of nodes. In this

prediction model, I will assume that a tick is 1/(2,4*10
9
) second (the processors on the cluster are

2,4Ghz AMD Opterons).

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

22 Report Barras Frédéric

Phase Time [s]

MPI Runtime initialization

Y=0.25+0.035*X

MPI static process creation

Y = 4’000’000*log2 (X) + 10’000’000 (ticks) =

0,016666 * log2(X) + 0,0416666 [s]

MPI dynamic process creation

50’000’000+680’0000*X (ticks) =

0,2833 + 0,028333 *X [s]

POP-C++ Runtime initialization

Y=0.05

POP-C++ without JobManager object creation

30’000’000*X+9’000’000 (ticks) =

0,125 *X + 0,0375 [s]

POP-C++ with JobManager object creation

25’000’000+10’000’000*X (ticks) =

0,10466 + 0,041666 [s]

Tableau 2 - prediction equations

4.1.1.2. Runtime Launch

This graph shows the runtime launch prediction model:

Figure 7 - runtime initialization prediction model

The time to launch POP-C++ Runtime shouldn’t change, because the number of nodes doesn’t affect

it. It will be at 0.05 seconds.

MPI will increase with each process, because a part of the initialization of each process is made

during the runtime launch. This is the node allocation. It has to be made for each node; it is also a

linear increase. MPI will start with 0.25 seconds, and goes until 0.81 seconds.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

T
im

e
[s

]

Nb of Nodes/Processes

runtime initialization

MPI Runtime

POP-C++ Runtime

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

23 Report Barras Frédéric

4.1.1.3. Objects/processes initialization

This graph shows the object/processes creation prediction model:

Figure 8 - Processes/Objects initialization prediction model

MPI Static should stay very low, and increase in a logarithmic way. The processes are created in

parallel, as described in the section 2.5.2. With 16 nodes, it takes 0.108 seconds to create all the

processes.

POP-C++ will increase in a linear way, due to the fact that the objects are created sequentially. POP-

C++ without JobManager will be the slower one, due to the fact that the ssh connection between

nodes using the user account asks for an authentication. This authentication is done with a pair of

public and private keys. The JobManager, as a service, doesn’t need to make an authentication each

time, that’s why it will be quicker on this diagram. This is due to the configuration on the cluster, and

we have no right to change it. Without JobManager, it spends 2.12 seconds to create 16 objects, and

with JobManager, it spends 0.854 seconds.

MPI dynamic will also increase in a linear way, because it has to start the runtime for each new

dynamic process. For 16 processes, MPI dynamic needs 0.736 seconds.

0

0.5

1

1.5

2

2.5

0 5 10 15 20

ti
m

e
[s

]

Nb of Objects/Processes

Objects/Processes initialization

MPI static

MPI Dynamic

POP-C++ with

JobManager

POP-C++ without Job

Manager

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

24 Report Barras Frédéric

4.1.1.4. Total initialization

This graph shows the total time initialization prediction model:

Figure 9 - time initialization prediction model

The total time is the addition of the runtime launch and the object/processes initialization. MPI static

is clearly the best solution due to the fact that it has a LOG(N) complexity, compared to all the others,

which have an N complexity (linear complexity).

MPI static needs 0.918 seconds to start 16 processes, MPI dynamic 1.021seconds, POP-C++ without

JobManager 2.17 seconds and with JobManager 0.904 seconds.

The next part will be the comparison between these prediction models and the results obtained on

the PHOENIX cluster. POP-C++ and MPI will also be compared on runtime launch, objects/processes

creation and total initialization.

0

0.5

1

1.5

2

2.5

0 5 10 15 20

ti
m

e
 [

s]

Nb of Objects/Processes

Total initialization

Total MPI static

Total MPI dynamic

Total POP-C++ with

Jobmanager

Total POP-C++

without Jobmanager

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

25 Report Barras Frédéric

4.1.2. Measured

4.1.2.1. Runtime Launch

Figure 10 - Launch of the runtimes

This graph shows the launching of the runtime of POP-C++ and MPI. There are differences between

them:

- MPI prepares the runtime on every node, 0.28 seconds for one node, and 0.56 for 15 nodes.

POP-C++ only starts the runtime on the node where the application is launched. It explains

why MPI takes more and more time for each node, and POPC-++ stays at 0.0504 seconds

without taking care of the number of nodes potentially usable.

- At this point of the initialization, MPI is not ready to use processes, and POP-C++ doesn’t

have any knowledge about the remote nodes. The allocation of the nodes is done only for

MPI.

- An advantage for POP-C++ is that the number of nodes isn’t fixed; it could change during the

program execution. It’s a more adaptive solution than MPI, for example for programs

running on a grid of computers through the internet.

We can say that this comparison is not fair, because MPI has already a contact with other nodes, and

POP-C++ not. So MPI is after the runtime launch more advanced in the initialization than POP-C++.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

ti
m

e
 [

s]

Nb of Processes/Objects

Runtime launch

POPC Runtime

MPI Runtime

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

26 Report Barras Frédéric

This graph shows the comparison between prediction model and measures:

Figure 11 - runtime launch comparison

The launch of the runtime of POP-C++ really follows the prediction model. The difference between

them is 0.4 µs. And the measurements stay stable: the number of nodes available doesn’t have any

effect on it. (The line of “POP-C++ Prediction” stays under “POP-C++ Measure”).

The launch of MPI is quicker than the prediction model. It stays linear, with small differences due to

the variation of the time used to allocate the remote nodes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20

ti
m

e
 [

s]

Nb of Processes/Objects

runtime launch comparison

MPI Prediction

POP-C++ Prediction

MPI Measure

POP-C++ Measure

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

27 Report Barras Frédéric

4.1.2.2. Objects/Processes initialization

Figure 12 - initialization of the objects/processes

This graph shows the initializations of the objects/processes. We are in the program execution, the

runtimes are ready. For MPI static, that’s the call to MPI_Init(), for MPI dynamic, that’s the call to

MPI_Comm_spawn(), and for POP-C++ that’s the creation of the remote objects (the call to the

constructor of each object is not counted in this diagram).

- Both POP-C++ follow a linear progression. They create their objects one after another.

- MPI dynamic has to launch the child process on all the different nodes each time (in this case

all the remote nodes already have a MPI runtime ready), This is done in a linear algorithm. A

better implementation could do it logarithmically, by using the same technique as the static

initialization.

- MPI static creates the processes in a logarithmic way; it’s the best solution for creating a lot

of processes (in this example, 6 and more) in a minimum amount of time.

We see that in the future, the lines from the dynamic MPI initialization and the line of POP-C++ will

cross each other. It will be around the node 23 on this cluster.

- For POP-C++ with JobMgr : y=0.024x

- For MPI dynamic : y=0.015x+0.21

(The approximation linear lines were used to determine these equations.)

We can also say that MPI dynamic will be more efficient than POP-C++ with JobManager with 24

nodes or more. This only for the initialization part, the runtime is not counted in this equation.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20

ti
m

e
 [

s]

Nb of Objects/Processes

Object/Processes initialization

POPC with jobManager

MPI static

MPI dynamic

POPC without JobManager

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

28 Report Barras Frédéric

POP-C++ without Job manager is clearly the slower one, due to the need to authenticate the user on

every access on a different node. If this issue could be corrected, POP-C++ will be faster. The time to

access to a node is constant (0,02s) for every test I made. I can also say that POP-C++ without

JobManager will have a linear increase with every object added.

This table shows the difference between each application for 15 nodes:

Application Time [s] Percentage [%] remark

MPI static 0.11 100 Fastest one

MPI dynamic 0.446 405.45 Acceptable value for a dynamic

process creation.

POP-C++ without JobManager 1.563 1420 High value due to the authentication

issue

POP-C++ with JobManager 0.340 309.09 Acceptable value, the initialization

part of a program is not the most

important one. You can use this

value also as reference for POP-C++

without JobManager, if it hadn’t the

authentication issue.

Tableau 3 - percentage comparison for objects/processes creation

This graph shows the comparison between the prediction model and the measures for MPI:

Figure 13 - processes initialization comparison

For MPI static, the differences between the prediction model and the measured values are only due

to the OS noise, and the network. The complexity is not clearly visible here, but with more nodes, we

can see the LOG(N) complexity appears on the line (the line of “MPI static Prediction” stays under

“MPI static Measure”).

For MPI dynamic, the prediction model was too pessimistic. An explanation is that the first

measurements used to determine the behavior of MPI were taken with another version of MPI than

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20

ti
m

e
 [

s]

Nb of Processes/Objects

processes initialization comparison

MPI static Prediction

MPI dynamic

Prediction

MPI static Measure

MPI dynamic

Measure

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

29 Report Barras Frédéric

the one used to take the final measures. Between these two tests, the runtime of MPI was changed

to allow Manuel Schrag to do some tests between InfiniBand and TCP (see Manuel Schrag’s report [4]

for more details). But the complexity of the equation doesn’t change between the prediction model

and the measures.

This graph shows the comparison between the prediction model and the measures for POP-C++:

Figure 14 - Objects initialization comparison

The predictions for POP-C++ are all too pessimistic, but they stay in the right complexity (linear for

both cases). This diagram proves that POP-C++ without JobManager is slower on this cluster, due to

the authentication problem. Here is an example of the different values obtained for the timestamps.

With JobManager:

diff between t1 and t2Job : 8661891.000000
diff between t1 and t3Job : 25924708.000000
diff between t1 and t4 : 26960248.000000

Without JobManager :

diff between t1 and t2NoJob : 2688238.000000
diff between t1 and t3NoJob : 259319593.000000
diff between t1 and t4 : 260870956.000000

The difference is between the timestamp 2 and 3, during the communication with the remote node.

For POP-C++ with JobManager, it’s 17262817 ticks, also 0.0072 seconds, and for POP-C++ without

JobManager, it’s 256631355 ticks, also 0.11 seconds. It is 15.27 times slower. For the other

timestamps, POP-C++ without JobManager is faster. If this issue will be corrected, POP-C++ without

JobManager will be the fastest one.

0

0.5

1

1.5

2

2.5

0 5 10 15 20

ti
m

e
[s

]

Nb of Objects

Objects initialization comparison

POP-C++ without

Jobmanager

Prediction

POP-C++ with

Jobmanager

Prediction

POP-C++ without

Jobmanager

Measure

POP-C++ with

Jobmanager

Measure

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

30 Report Barras Frédéric

4.1.2.3. Total Initialization

Figure 15 - launch of the runtime + initialization of the objects/processes

On this graph, we can see a more complete comparison between the runtimes. This measurement

includes the launch of the runtime, and the initialization of the processes/objects. For POP-C++, the

constructor call is also taken here. The goal of this diagram is to show the needed time to launch an

application, until the program is ready to use the processes/objects and make them communicate.

- MPI Static starts with a bigger time than POP-C++, but then continues in a logarithmic way.

For programs with more than 24 objects, it’s definitely the most rapid one. For 13 processes,

it needs 0.691 seconds.

- Both POP-C++ and MPI dynamic continue in a linear way. If MPI stays later on the same

protocol (TCP), POP-C++ with JobManager will be a better solution; it increases less than MPI

per object.

- This table shows the difference between each application for 13 nodes (total initialization):

Application Time [s] Percentage [%] remark

MPI static 0.691 146.08 46% slower until 13 nodes, but will

become faster with 24 processes and

more

MPI dynamic 1.021 215.85 Will stay slower than POP-C++ with

JobManager

POP-C++ without JobManager 2.478 524.31 High value due to the authentication

issue. Without this issue, could be

faster as POP-C++ with JobManager

POP-C++ with JobManager 0.473 100 Fastest one

Tableau 4 - percentage comparison for total initialization

13; 2.4789

13; 0.4731

13; 0.6918

13; 1.0216

0

0.5

1

1.5

2

2.5

3

0 5 10 15

ti
m

e
[s

]

Number of nodes

Total initialization

POP-C++ without JobManager

POP-C++ with JobManager

MPI Static

MPI Dynamic

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

31 Report Barras Frédéric

This graph shows the comparison between the prediction model and the measures:

Figure 16 - Total processes initialization comparison

The difference between the predictions and the measurements for MPI dynamic can come from the

network communications. The node 10 was occupied with other applications, and took more time to

finish its initialization of its MPI process.

For MPI static, the measurement shows a difference of 0.22 s between the initialization of one and

two processes. This difference comes from the fact that when two processes are created, they are

called one after another. For more processes, MPI can then use the binary tree logic: both processes

1 and 2 wake one process each, which makes four processes. The logic is followed until all the

needed processes are ready.

Figure 17 - Total objects initialization comparison

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15

ti
m

e
[s

]

Nb of Processes

Total processes initialization

comparison

MPI static Prediction

MPI dynamic

Prediction

MPI static Measure

MPI dynamic

Measure

0

0.5

1

1.5

2

2.5

3

0 5 10 15

ti
m

e
 [

s]

Nb of Objects

Total objects initialization

comparison
POP-C++ without

Jobmanager

Prediction

POP-C++ with

Jobmanager

Prediction

POP-C++ without

Jobmanager

Measure

POP-C++ with

Jobmanager

Measure

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

32 Report Barras Frédéric

Between the prediction model and the measure of POP-C++ with JobManager, the difference is in the

time needed to create an object. The prediction was too pessimistic.

For POP-C++ without JobManager, the time to initialize an object was also too long in the prediction.

We can also see that the prediction wasn’t false, both lines are linear.

The next chapter will conclude this first part of my diploma project, by talking about the problems,

the measurements, and a personal conclusion.

5. Conclusion

5.1. Encountered problems

5.1.1. Cluster configuration

Now ok, bug resolved by An-Thuan. It is possible to use POP-C++ without job manager. The problem

was that the runtime from POP-C++ used rsh to communicate between the different nodes, which

was not usable on the cluster. Now, by adding export PAROC_RSH=/usr/bin/ssh to the

user bash file, the communication between nodes without Jobmanager is possible. It is until now

very slow (0,2s), as described during the analysis of the measurements.

5.1.2. Cluster hours

This is not a real problem, but more an organizational need. We had access to the cluster on

Mondays and Wednesdays. So we had to adapt our planning to fit to these days. It explains also why

we needed more time to finish the interpretation of the results than first planned.

5.1.3. POP-C++ static object array creation

 Until now, it is not possible to select the constructor we want to use in POP-C++, when creating

arrays of objects. For the runtime launch, with a static array of objects, I had to use the JobManager,

to avoid having all the objects on the same node. I put @{power(20)} after the default

constructor, to make the JobManager distribute the objects. A solution for this problem would be the

development of the third part of our project: Arrays in POP-C++.

Another problem with this object creation is that POP-C++ doesn’t allow us to declare a paroc object

before the main. It always gives the following exception:

Exception thrown by: paroc_exception*

At this point, no solution has been found. Create a test for POP-C++ where an array of objects is

created before the main isn’t useful, because it will be equal to the total initialization of POP-C++ (in

this case, with JobManager).

5.2. About the measured tests

5.2.1. POP-C++ with and without Jobmanager

About the initialization, POP-C++ is comparable to MPI. The tests show that the initialization of a few

objects (in this example, 1-4) can be made in less time than MPI. For more objects, or for objects on a

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

33 Report Barras Frédéric

Grid without an NFS, where the time to get the executable of the object will be longer, the next

version of POP-C++ with asynchronous object creation will increase a lot the performances of the

runtime.

The measures were quite regular; they all have a small standard deviation. An interesting one is POP-

C++ with JobManager compared to POP-C++ without JobManager: the time used by the JobManager

to find an appropriate place always depends on the current resources, and of the availability of the

nodes.

Example of the standard deviation of POP-C++ for 14 nodes (initialization of the objects only, the

runtime has no interest here). The percentage is calculated with the following formula:
�������� ��	
��
��∗
��

�	����� �
��
.

Standard deviation Time[s] Percentage [%]

POP-C++ with JobManager

0.171

73.1483852

POP-C++ without JobManager 0.044

4.174313199

Tableau 5 - standard deviation

We see that the standard deviation with JobManager is really more important, and explains why the

measurements do not completely follow the prediction model. It always depends on the number of

nodes the JobManager has to ask before it finds a node which has the requested requirement.

As a comparison, POP-C++ without JobManager stays more stable, because the time to ask a

particular node is always the same. It proves that without JobManager, when the issue about

authentication will be corrected, it will be more stable than POP-C++ with JobManager.

5.2.2. Standard deviation of the total initialization

The following chart shows the different standard deviation of MPI and POP-C++.

Standard deviation Percentage[%]

MPI static 2.43

MPI dynamic 5.61

POP-C++ without JobManager 1.45

POP-C++ with JobManager 3.23

Tableau 6 - standard deviation of the total initialization

The standard deviation of POP-C++ with JobManager is more important than the one without

JobManager. It proves that the previous comparison was right, that the JobManager has a more

random time to find a node than the version without.

POP-C++ is more constant for the creation of objects than MPI static. This can be considered as an

advantage to determine the time needed for the initialization of an application.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

34 Report Barras Frédéric

5.3. Personal

POP-C++ doesn’t really take more time than MPI to be ready to be used, but the number of objects

affects it more than the number of processes for MPI. This is not a complete comparison of the

runtimes, due to the time that we available. The PHOENIX cluster had 16 nodes, I think that with a

bigger cluster (64 nodes, for example) the results could be more interesting. It was a good

introduction to MPI and to the world of parallel computing. Working with a cluster was very

interesting, and permitted me to see different environments. This first part of the project was a good

introduction to the HPC and it permitted me to have an overview of the issues which can happen in

this field.

The next Chapter contains the Task 2: Global communication in POP-C++. In this chapter, it will be

shown how we added the possibility of calling broadcasts and reduce methods with POP-C++

Objects. This will be developed in a library for POP-C++.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

35 Report Barras Frédéric

Collective Communication in POP-C++

1. Introduction {common}

This part of the project consists in adding collective communication to POP-C++. POP-C++ already

provides a feature to use collective communication by using MPI underneath (see [4]). What we want

to do is add collective communication independent from MPI. Collective communication means that

more than 2 entities are involved in a communication process (point to multipoint, multipoint to

multipoint).

1.1. Introduction to collective communication in POP-C++ without

changing the parser

I will focus on adding collective communication without changing the actual POP-C++ parser. This

restriction implies that I have to find a way to call methods on every type of object, without knowing

their structure before, and I have to be able to handle every type of parameter and return. For the

version which changes the actual POP-C++ parser, please refer to the project report from Manuel

Schrag [4].

I will need to use templates in C++ to develop this library. The next chapter gives a small introduction

to templates. For more precise information, please refer to the web pages in the references. The

chapter Analysis (chapter 0) explains the different functionalities that the library has to offer. The

chapter Conception (chapter 3) gives a more precise view of the library, thinking of the fact that it

will be written in C++. The Implementation (chapter 4) indicates the actual state of the code and the

limitations of the library.

1.2. Templates in C++

Templates in C++ permit to make classes, methods and variable independent of a type. A template

can be understood as a generic type, which takes a real type at the compilation time. This snippet

shows the way to create a method using templates.

template <class T>
T max (T a, T b) {
 return (a>b)? a : b;
}

This snippet shows how to use the template class created in a C++ code

void main()
{
 cout << "max(10, 15) = " << max(10, 15) << endl ;
 cout << "max('k', 's') = " << max('k', 's') << endl ;
 cout << "max(10.1, 15.2) = " << max(10.1, 15.2) << endl ;
}

This snippet shows the output of the main.

max(10, 15) = 15
max('k', 's') = s
max(10.1, 15.2) = 15.2

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

36 Report Barras Frédéric

The method max(T a, T b) takes as parameter every type of data possible. You can even give objects

to it, if the operator > is implemented. At compilation time, T is replaced by the type given when

calling the method. In this example, we will have a max for int, char and double.

The snippets and examples are from [3], a web page which has a complete explanation of the

function and class templates.

1.3. Collective communication in MPI{common}

Understanding point-to-point communication in MPI is recommended before reading this section

(see Manuel Schrag’s report [4]).

In parallel computing we can find communication models where more than 2 processes are involved

at the same time. The MPI standard specifies a bunch of functions which are defined under the term

Collective communication and which correspond to such communication models. Often, one process

is distinguished from the others (by its rank) and is commonly called root (for 1-N / N-1 functions).

But in some functions, every process does the same (N-N functions).

Method Description Visualization

Broadcast The root process sends identical data to any

other process of the same group.

Figure 18 - MPI broadcast[9]

Scatter root sends different data of same size to any

other process of the same group.

Figure 19 MPI Scatter Erreur ! Source du renvoi

introuvable.

Gather root gathers the data from all involved

processes and places them, sorted by rank,

into its reception buffer.

Figure 20 MPI Gather Erreur ! Source du renvoi

introuvable.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

37 Report Barras Frédéric

Reduce The main idea is to do the same as the

Gather operation. But before storing every

single received piece into the reception

buffer, a Boolean or arithmetic operation is

performed to combine the data. And only

the result of this operation is stored in the

reception buffer of root.
Figure 21 MPI Reduce Erreur ! Source du renvoi

introuvable.

AllGather No root process is present in this function. It

corresponds to a multi broadcast where

every process sends its data to every other

process of the group. The final reception

buffer of those will be identical.

Figure 22 MPI Allgather Erreur ! Source du renvoi

introuvable.

All-to-All This is an N-N function and thus doesn’t

contain a root process. Process i sends the

kth block of its send buffer to process k,

which stores it in the ith block of its

reception buffer.

Figure 23 MPI All-to-All Erreur ! Source du renvoi

introuvable.

AllReduce N-N function with no root process. Multi

broadcast with following reduction

operation.

Figure 24 MPI Allreduce Erreur ! Source du renvoi

introuvable.

Tableau 7 - 1 Explanation and visualization of MPI collective communication functions

1.4. Collective communication in POP-C++{common}

In the current version of POP-C++ it is possible to couple MPI code in a POP-C++ program by using a

special template class. The disadvantage in this approach is that we lose the object oriented

paradigm and introduce the message passing paradigm instead. Erreur ! Source du renvoi

introuvable. explains how collective communication should be implemented to keep the OO

paradigm. Circles represent parallel objects and rectangles represent a data element.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

38 Report Barras Frédéric

Method Description Visualization

Broadcast The program invokes a method on the group by

passing data in parameters. This data is

communicated to all members of the group and

is identical for every one of them.

Scatter The program invokes a method on the group by

passing lists of data elements in parameters.

Each parameter is a list of data elements. The ith

element of this list is sent to the ith object in the

group, thus every one receives potentially

different data.

Gather For the invoked method on the group every

member returns one data element. The final

result on the caller’s side is a list of data

elements.

Reduce The main idea is to do the same as the Gather

operation. But instead of storing every data

element separately, only the result of an

arithmetic or logic operation of these elements is

stored.

Result

Parameter

Result

Parameter

Figure 26 POP-C++ Scatter

Figure 25 POP-C++ Broadcast

Figure 27 POP-C++ Gather

Figure 28 POP-C++ Reduce

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

39 Report Barras Frédéric

AllGather This operation corresponds to a multi broadcast

where every object of the group calls a method

on every other member i by passing the ith data

element of its list as a parameter. After the

operation, all objects contain the same list of

data elements (same order). The data element

passed by object i is at the ith position.

All-to-All Object i invokes a method on every object k by

passing the kth data element of its list as a

parameter. Object k stores the received data

element at the ith position of its list.

AllReduce This operation corresponds to a multi broadcast

with following reduction operation.

Tableau 8 - Explanation and visualization of POP-C++ collective communication functions

2. Analysis

This analysis explains the main idea to develop a collective communications library. The

functionalities and their ideal comportment will be described in the following chapters. This library

has to be developed without modifying the POP-C++ parser. The goal is also to create a syntax easily

understandable for a programmer who is used to C++ and POP-C++.

The next chapter will explain a possibility to implement this library and how to use it.

2.1. Independent parser library

With this method, groups of objects which are supposed to use collective methods are made. The

class which represents these groups has to give the following possibilities:

Before

After

Before

After

Before

After

Figure 29 POP-C++ Allgather

Figure 30 POP-C++ All-to-all

Figure 31 POP-C++ Allreduce

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

40 Report Barras Frédéric

Create a group To create a group, you need to know the type of

object the group will contain, and a estimate of the

number of objects you will have

Add members to the group To add a member, you need a reference to the object,

an existing group which can contains the same type of

objects.

Remove members from the group To remove a member, you need to know his position

in the group.

Get the ID of a member To get the ID of a member, you need the reference to

this member

Call a broadcast on the group To call a broadcast on the group, you need to a valid

function for broadcasting and implement the method

doAction in the object class.

Call a reduce on the group To call a reduce on the group, you need to a valid

function for reducing, a valid parameter to store the

return value, a valid parameter to determine the type

of reduction you want and implement the method

doAction in the object class.

Call a gather on the group To call a gather on the group, you need to pass in

parameter a valid function for gathering, a valid

parameter to store the results and implement the

method doAction in the object class.

Call a scatter on the group To call a scatter on the group, you need to pass in

parameter a valid function for scattering, and

implement the method doAction in the object class.

Merge groups To merge groups, you need the reference to two

different groups. After a merge, all the objects of both

groups will be included in the first group.

Here is a pseudo code for the method doAction:

return type doAction(String methodString){
 get methodName from methodString
 get the parameters from methodString
 switch methodName{
 case method1:
 return this.method1(parameters);
 break;
 case method2:
 return this.method2(parameters);
 break;
 case method3:
 return this.method3(parameters);
 break;
 default:
 return null;
 }
}

The return type of doAction will be the return type of the method passed as a String. doAction has to

be asynchronous when it has void as return type, and synchronous else.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

41 Report Barras Frédéric

Having a common method in every object which will be used with our collective library permit us to

stay generic. Without that, we would have to write a specific library for each kind of object we have.

That’s a way to avoid the problem of the non-existence of reflection in C++. We have to do it

“artificially”, in the object class. A next step will be finding a way to use the reflection in C++, and

then generating this method in the library. The use of reflection will be discussed in the chapter:

conception (see chapter 3).

Constraints:

- Each group contains only one kind of objects, which is specified when calling the constructor.

- The object has to implement a doAction method, to simulate reflection (in a first time).

- Before the destruction of an object, the programmer has to remove it from every group it

belongs to.

- You cannot create group of primitive types.

- Broadcasted and scattered methods cannot have a return type.

- Reduced and gathered methods must have a return type.

- The group is not a parallel object, so you can’t give a reference of a group to a remote object.

This is due to the use of templates in POPGroup.

2.1.1. Use Case Diagram

Figure 32 - use case

There are two main parts in this use case.

The first one is all the action possibilities on a group itself, like: add an object to the group, remove

an object from the group get the size of the group and get the rank of a member of the group. These

actions don’t have any effect on the objects; some of them just need a reference to them.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

42 Report Barras Frédéric

The second part is the actions which interact with objects. This is the collective method calls. When

doing a broadcast, a gather or a reduce, a method is called on every object which is in the specified

group. The interaction with the objects is the call to the method which is a parameter passed to the

collective method.

The link between collective method and the user object represents in fact the link which is between

each collective method (like broadcast, gather …) and the object.

The group doesn’t create the objects itself. The programmer has to first create the objects in his

main application, and then add the reference of these objects to the group.

2.1.2. Sequence diagrams

In the sequence diagrams, the POPGroup is always on the local machine, the same as the main

program, and the T objects (Objects of type T, the type used to initialize the POPGroup) are remote

objects. The POPGroup doesn’t contain T objects, only a reference to their interface.

2.1.2.1. Create a group

Figure 33 - create a group sequence diagram

At the creation of a group, the size is set to 0 and an array of the type of objects is initialized. The

group is then ready to store objects (of the specified type), and execute collective operations on it.

The array will have a predefined size, and will grow when necessary.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

43 Report Barras Frédéric

2.1.2.2. Modify a group

The use case “get size” and “add Members “ have been integrated to this one. It was too simple and

little to make a sequence diagram just for them.

Figure 34 - modify a group sequence diagram

This diagram shows the available methods for handling the group. If a new method to modify the

group is needed, it will be shown on this schema. The size returned is the highest rank +1 in the

group. For example, if you have 4 objects, the highest rank is 3, so the size returned is 4. A part of

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

44 Report Barras Frédéric

addMembers is also on this diagram. This method takes as parameter an array of objects. Every

Object of the array is used as parameter for the method addMember. This is done in the library, to

avoid this job for the programmer.

2.1.2.3. Add an object

Figure 35 - add an object sequence diagram

When adding an object to the group, you should do the following verifications: is the object from the

good type? One possibility of testing that is using a template table in our library. At the creation of

the Group, the array will be initialized with the type of the Object given as parameter, and then it

won’t allow other type objects to be stored in it.

2.1.2.4. Remove an object

Figure 36 - remove an object sequence diagram

Here is an example of on algorithm which could be used. In this example, we want to delete the

second object of the array:

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

45 Report Barras Frédéric

Step 0, actual state Step 1, place last object instead Step 2, decrement size

Tableau 9 - decrementation algorithm

The object 2 is not really deleted; we only delete the reference to it in the group.

Another solution is to use a vector to handle the members. This will be implemented, because a

vector is available in the standard library of C++.

2.1.2.5. Get the rank of an object

Figure 37 - get rank sequence diagram

For the comparison in this diagram, the reference to the object (the address contained in the

pointer) will be used. This method is mainly useful when you want to delete an object. Due to the

deletion algorithm, objects don’t keep automatically the same rank during the program run, you

have to get the actual rank of an object before trying to delete it.

Obj 1

Obj 2

Obj 3

Obj 4

Size = 4

Obj 1

Obj 4

Obj 3

Obj 4

Size = 3

Obj 1

Obj 4

Obj 3

Obj 4

Size = 4

0

1

2

3

0

1

2

3

0

1

2

3

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

46 Report Barras Frédéric

2.1.2.6. Merge Groups

Figure 38 - Merge Groups sequence diagram

Every object included in the second group is added into the first one, using the getMember() method.

After a merge, the group 2 is not different. This could be useful for creating subgroups to simulate

multicast for example. The objects are not copied; their references are copied from a group to the

other one.

2.1.2.7. getMember

This method returns a reference to the member at the rank given in parameter.

2.1.2.8. empty & isEmpty

The empty method permits to empty a group from all his object references. The method isEmpty

returns true if the size of the group is zero.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

47 Report Barras Frédéric

2.1.2.9. Collective method call

Figure 39 - collective method call sequence diagram

This diagram shows every actually available collective method on the group. Every time a collective

method is called, it has a String containing the method to call on the object, and his parameters. For

example, if we want to call add(4) on each of our Integer objects :

Integer o1();
Integer o2(“localhost”);
POPGroup<Integer> myGroup(3);

myGroup.addMember(o1);
myGroup.addMember(o2);
myGroup.broadcast(“add”,4);

For a method with a return value, we have to call for example a broadcast followed by a reduce, and

give the memory address of the return:

int return;
String parameters = {“get”};
myGroup.broadcastreduce(“get”, &return, POPGROUP_REDUCE_MAX);

In this case, the reduce call will make a get on every object, and put into the variable return the value

of the highest object.

The reduce and gather cases don’t correspond to real methods calls. The real methods you can call

for a reduce are broadcastReduce and scatterReduce. For a gather operation, it’s broadcastGather

and scatterGather. Everytime you want to have a value back, you have to send a method call before,

using either a broadcast or a scatter. The next sequence diagrams just indicate the send or receive

part of the action to focus on the interesting comportment.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

48 Report Barras Frédéric

2.1.2.10. Broadcast

Figure 40 - broadcast sequence diagram

The method which is broadcasted may have an asynchronous call to be more effective. With a

synchronous call, the broadcast has to wait until the first object has finished his method to call the

second one.

2.1.2.11. Gather

Figure 41 - gather diagram sequence

The gather call will function in a synchronous way. You have to wait until each object has finished the

method call until the next one can start.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

49 Report Barras Frédéric

To get the result of a precise object, after the gather is terminated, you can get the rank of the object

you want to know the result. This rank will indicate the position of the result of this object in the

returned array. Before a gather, you always have a broadcast or scatter, to determine the way the

parameters are sent to the objects.

2.1.2.12. Reduce

Figure 42 - reduce diagram sequence

The difference between the reduce and the gather methods is at the end of the method. Gather just

returns all the collected values, and reduce has to choose one amongst all of them. To make this

choice, the programmer will have to give a parameter indicating the value selection method. The

following selection possibilities will be available:

- POPGROUP_REDUCE_MAX

- POPGROUP_REDUCE_MIN

- POPGROUP_REDUCE_OR

Adding other possibilities will be very simple, you have to add the constant value to the library, and

then codes the algorithm to choose the return value of reduce. Before a reduce, you always have a

broadcast or scatter, to determine the way the parameters are sent to the objects.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

50 Report Barras Frédéric

2.1.2.13. Scatter

Figure 43 - scatter sequence diagram

On this diagram, the scatter operation is explained. The scatter method takes two parameters: the

string representing the method and an array which has the different parameters to distribute. For

each object in the member’s array, doAction() will be called, with the arguments corresponding to his

rank in the parameters array.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

51 Report Barras Frédéric

2.1.3. Class diagram

Figure 44 - POPGroup class diagram

The class POPGroup is the library for collective methods on POP-C++ objects. Until now, the method

doAction had to be written in the object file, to simulate reflection. Finding a solution to generate

this method dynamically in the library would make it totally generic, for each kind of object.

In the next Chapter, Conception, I will talk about the different problems we can have implementing

this analysis, the way to use templates, and an explanation about how to use reflection in C++.

3. Conception

This chapter contains the conception of the collective methods library which doesn’t need a change

of the parser. I will explain more precisely the possibilities to implement it, considering the type of

the arguments in the methods and I will admit that reflection is possible in C++.

3.1. Version without modification of the parser

The following paragraphs explain the methods used to implement the library POPGroup. The goal

was to make a library as independent as possible to the kind of object which will be stored in it. For

each proposition, I will give the advantages and disadvantages.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

52 Report Barras Frédéric

3.1.1. Type of the stored parallel objects

There are actually two ways to store the type of the objects which have to be stored in the

POPGroups. The first one is the utilization of templates, and the second one the utilization of a class

from which every parclass has to inherit to use collective communications.

Templates are used to determine the type of the remote objects which will be stocked in the

POPGroup. To store them, the library doesn’t need to know their methods, variables or structures. A

Vector of the type of the object will be initialized. For example, this is what happens when you want

to create a POPGroup containing Integer paroc objects:

POPGroup<Integer> myGroup(“Integer”);

This possibility, coupled with reflection, permits the programmer to call collective methods and pass

the name of the object method which has to be handled in parameter. Nothing is added to the

object, all the work is done in the library. The programmer has to know which object method can be

called with which collective method. To see the rules for calling methods, please refer to the

following comparison table on the next page. This table is an abstract for programmers who want to

use the POPGroup library. They will have to check on this table the possible calls they can make

based on a method signature. The following rules are to know:

- Methods with no return value are able to be broadcasted or scattered.

- Methods with return value are able to be reduced or gathered.

- Methods without parameter are automatically broadcasted.

- Methods with parameters can be broadcasted or scattered.

Method in .ph file Possible collective method calls

void myMethod() /* broadcast : call the method on every member */
void broadcast(“myMethod“)

void myMethod(int n, int m, …) /* broadcast : call the method with same parameters (n,m,…) on every member */
void broadcast(“myMethod“, int n, int m, …)

/* scatter : call the method with different parameters (n[i],m[i],…) on every member by
specifying the size of the array(s) (size) */
void scatter(“myMethod“, int *n, int *m, …, int size=getSize())

int myMethod() /* gather : call the method on every member. Gather the return values in an array (res[])*/
void gather(“myMethod“, int res[])

/* reduce : call the method on every member. Return result of reduce operation passed as a
parameter (op) in the out parameter res*/
void reduce(“myMethod“, int res,char *op)

int myMethod(int n, int m, …) /* broadcast and gather : call the method with same parameters (n,m,…) on every member.
Gather results in an array (res[]) */
void broadcastgather(“myMethod“, int n, int m,…, int res[])

/* scatter and gather: call the method with different parameters (n[i],m[i],…) on every
member by specifying the size of the array(s) (size). Gather the return values in an array
(res[]) */
void scattergather(“myMethod“, int *n, int *m,…, int res[], int size=getSize())

/* broadcast and reduce : call the method with same parameters (n,m,…) on every member.
Return result of reduce operation passed as a parameter (op) in the out parameter res*/
int broadcastreduce(“myMethod“,int n, int m,…, int res, char *op)

/* scatter and reduce : call the method with different parameters (n[i],m[i],…) on every
member by specifying the size of the array(s) (size). Return result of reduce operation
passed as a parameter (op) in the out parameter res */
int scatterreduce(“myMethod“, int *n, int *m,…, int nb=getSize(), int res, char *op)

Tableau 10 - abstract of the translation of standard method to collective method

 The template possibility has the following disadvantage: templates are not usable in the actual

version of POP-C++. Due to this restriction, we cannot design the POPGroup as a remote object, and

so we cannot pass his reference to remote objects. Due to this, it is impossible to make N-to-N

communications, or create trees on the network to gain methods execution time.

Another possibility is creating a class containing the methods which will be called by the library,

when the programmer wants to use collective communication. A big disadvantage of this concept is

that the programmer has to inherit his objects from this library class, and he has to implement the

collective methods. We don’t want to give this amount of work to the programmer, so will this

solution will not be implemented, it is just mentioned here, and was not chosen for the rest of this

conception.

3.1.2. Type of the parameters

The parameter type problem is the following: we cannot write in the library a method for each

possibility of parameter type. We have to find a solution to pass the parameter type when calling a

collective method on a group.

I found different solutions:

- Use templates for each parameter

o This method will be more effective than the second one, and was chosen for this

conception. We can pass directly the parameter in the function. A disadvantage is

that we are limited by the number of arguments we want to pass. For every possible

number of arguments, we have to create the corresponding method for broadcast,

gather, scatter and reduce. This method will permit us to pass paroc objects, and

standard C++ objects if they inherit from the class POPBase.

- Use char* containing the type to make it generic

o This method will require that we develop syntax to create every parameter

possibility, including arrays, structures, objects… The parsing of the char* will take

time, and the possibility of passing objects will function only if we have a method to

serialize them. Actually, we can serialize the data in the objects, but not the objects

and their structure. This solution is just mentioned here, and was not chosen for the

rest of this conception.

3.1.3. Reflection in POP-C++

First of all, we needed to find an open source library on Internet to add reflection to C++. I decided to

use Reflcpp (see their website [6]). This library was developed during Spring 2007, so it is quite new,

and I had the possibility to send Emails to the developers of this library. They helped me to resolve

some problems with the actual version available on their web page (see their website [6]). To see the

encountered problems, please refer to section 5.1.1.

The reflection allows me to cast a string into a method call without knowing the structure of the

object on which I want to call a method. The reflection is needed in the collective communication

calls of the library. For every collective communication, a string representing the method is passed as

parameter. I have to transform this string into a method call on the object without knowing before

compilation time which kind of object it is.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

55 Report Barras Frédéric

4. Implementation

4.1. Test

To test the library, I created a main which calls every method of the library, and a class which has

every possible method: with or without return and/or parameters, parameters as base type of class

type. The code source is available in the appendix, chapter 8.10.10. Here is the output when

launching the main for the reflection example:

barraf@barraf-laptop:~/example_reflection$./main.out

start of the Test
Object A constructed
Object B constructed

Call doMethod on Object B
Name of the class : [A]
Get an instance of the methode 'methodA1' of A
Invoke 'methodA1' on A

Call method1 on Object A
Get an instance of the methode 'methodA2' of A
Invoke 'methodA2' on A, (value should be [4])

 !!! invocation !!!Call method2 on Object A with value=[4]
Get an instance of the methode 'methodA3' of A
Invoke 'methodA3' on A
Call method3 on Object A
Value of return method 3 (should be [14]) = [14]
Get an instance of the methode 'methodA4' of A
Invoke 'methodA4' on A, (value should be 4*2=[8])
Call method4 on Object A with value=[4]
Value of return method 4 (should be [8]) = [8]
Get an instance of the methode 'methodA5' of A
Invoke 'methodA5' on A, (value should be 4+8=[12])
Call method5 on Object A with value1=[4] and value2=[8]
Value of return method 5 (should be [12]) = [12]

In doMethod in the object B, we make a call to each method of the object A using reflection. Every

result that we receive is correct.

A second main with parallel object has been written, but not tested, due to the problem of the

compilation with POP-C++ (See 5.1.1 for more details). The same tests are made.

4.2. Actual state of development

Actually, the library cannot be compiled with POP-C++ when using parallel objects. When running the

library with a classical C++ object, the result shows that every collective and management method

works correctly. The result is in the annexes, chapter 8.10.14. We can see that all the functionalities

of the library work. A corrected version of the library reflcpp is available on the CD, and a new

version will be soon available. The developers of the reflcpp library are actually working on it.

4.2.1. Installation

To use the POPGroup library, you need to install reflcpp. For his, please refer to their website [6] and

README.TXT, which is in the zip file of reflcpp. I made some needed changes into their source code,

essentially in codegenerator.cpp. The modified version of reflcpp is on the CD of this project.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

56 Report Barras Frédéric

You can also take the directory /src under reflcpp and paste it into the home directory of the

application. Then compile the library with the following command (assuming you are in the src

directory):

$ g++ -c *.cpp

When compiling, pleaes do not forget to link the .o files of the library with the application.

This installation supposes that POP-C++ is already installed on the machine. If not, please refer to the

user guide for POP-C++ [5] for the installation of the POP-C++ runtime.

4.2.2. Utilization

To use the library (for our case, in C++ or POP-C++ without parallel objects, due to the actual issues),

the following steps are to be made:

- Implement the application which wants to use POPGroup.

- Generate the needed code for reflection with the codegenerator tool (assumed you are in

home/user/relf-0.1-inst/bin):

./cg.sh –t=cpp /home/myApplic/Object.hpp NameOfObject > /home/myApplic/Object_reflection.cpp

./cg.sh –t=hpp /home/myApplic/Object.hpp NameOfObject > /home/myApplic/Object_reflection.hpp

- Include the Object_relfection.cpp file into the file POPGroup.hpp.

- Compile the application with the file Object_reflection.cpp and the reflcpp library.

g++ -c mainAB.cpp A.cpp B.cpp A_reflection.cpp
g++ -o main.out *.o ./src/*.o

- Run the application

./main.out

When trying to get an instance of the wrong class, or from a class from which the

Class_reflection.cpp and Class_reflection.hpp files are not available, you obtain this error at the

execution time:

barraf@barraf-laptop:~/example_reflection$./main.out

start of the Test
Object A constructed
Object B constructed
main.out: Type.cpp:90: static const reflcpp::Type_body*
reflcpp::Type_body::getType(const std::string&): Assertion `it != s_class_name_map-
>end()' failed.
Aborted (core dumped)

The error says that a pointer should be different from the end of the class name map. The class name

map contains all the classes which have reflection files to allow them to be used with reflection.

When the pointer it is at the end of this list, the class which we want to instantiate doesn’t exist.

When a method which doesn’t exist on the actual object is called, the following error will appear at

the execution time:

barraf@barraf-laptop:~/example_reflection$./main.out

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

57 Report Barras Frédéric

start of the Test
Object A constructed
Object B constructed

Call doMethod on Object B
Name of the class : [A]
Get an instance of the methode 'wrongMethod' of A
terminate called after throwing an instance of 'reflcpp::ReflectionException'
 what(): wrongMethod does not exist in A (src/ClassType_tmpl.hpp:1140)
Aborted (core dumped)

In this case, the error message is very clear. The method we try to call, wrongMethod, doesn’t exist in

the class A.

When calling an existing method with wrong arguments, like too many arguments, or a wrong type

of argument, you obtain this error at execution time:

barraf@barraf-laptop:~/example_reflection$./main.out

start of the Test
Object A constructed
Object B constructed

Call doMethod on Object B
Name of the class : [A]
Get an instance of the methode 'methodA1' of A
Invoke 'methodA1' on A
Object A constructed
main.out: src/MemberFunctionDcl.hpp:52: typename Ret_TP::type
reflcpp::MemberFunctionDcl000<Obj_TP, Ret_TP, FuncP, Name>::invoke3(Obj_TP*, int,
reflcpp::Arguments&) const [with Obj_TP = A, Ret_TP =
reflcpp::FundamentalType_tmpl<void>, typename Ret_TP::type (Obj_TP::* FuncP)() =
&A::methodA1, const char* Name = ((const char*)(&
reflcpp::A_strings::m_methodA1))]: Assertion `n == 0' failed.
Aborted (core dumped)

The error here is less readable. The assertion which failed explains that the reflection library didn’t

found any method with the required name and arguments. The lines before explain that the method

cannot be satisfied with the given types for the templates.

Here is an example of the commands used with the object A in POPGroup (the code source is

available in the appendix).

barraf@barraf-laptop:~/POPGroup$cd src/
barraf@barraf-laptop:~/POPGroup/src$g++ -c *.cpp
barraf@barraf-laptop:~/POPGroup/src$ cd ..
barraf@barraf-laptop:~/POPGroup$ parocc -o mainAB.out mainAB.cpp A_reflection.cpp
POPGroup.cpp A.cpp ./src/*.o
barraf@barraf-laptop:~/POPGroup$ parocrun objmap ./mainAB.out

4.1. Limitations

Here are the actual limitations of the POPGROUP library:

- All methods must have different names. Different parameter types are not sufficiant to make

a difference between methods with the same name. This limitation comes from the

reflection library: A string with only the name of the method is needed to call it, so if we have

two methods with the same name but different parameters, the reflection tool will not be

able to know which one it should call.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

58 Report Barras Frédéric

- Methods with more than two parameters cannot be used with the POPGroup library. This

comes from an implementation choice. This limitation can be removed, but you have to write

all the existing collective methods with 3 parameters in input (actually, methods with one

and two parameters are implemented).

- You cannot use methods with class parameters which are the same as the class. See section

5.1.1 for more information about it.

- The library is not usable with parallel objects in POP-C++, due to the compilation problems

with the templates: see section 5.1.1 for more information about it.

Several syntax and structure rules are to also to respect. There are due to the implementation of the

reflection library:

- All header files have to have the extension: .hpp.

- All C++ files have to have the extension: .cpp .

- Reflection files are to be called Object_reflection.cpp and Object_reflection.hpp.

- The directory src containing the sources of reflcpp modified has to be in the root directory of

the application, where the reflection files are.

5. Conclusion

5.1. Encountered problems

5.1.1. Reflection in C++

We tried to find a library to add reflection in C++. The library Relfex [10] was interesting, and we tried

to install it. You have to follow these steps to install and use it:

- Download the latest version on their CVS, or download it from the Releases page. The last

version on the CVS is impossible to build, due to files missing (configure for example). We

also took the last version on the release page.

- To build an installation, you have to enter the following commands

tar xvzf reflex.tar.gz
Cd reflex
./configure –prefix=/home/myuser/reflex-inst
make
make install

- After that, you have to create a dictionary. This is a C++ file, describing the Class we want to

use reflectively. A tool is provided to do this, this is genreflex. This tool needs a .h file as

parameter, and creates a C++ file which then will be used for creating a dynamic library in

the memory. The first problem is that .ph files are not accepted as parameter. We rewrite

our ph files into h files to permit the tool to create his C++ file.

- The dictionary created should then be compiled with the application. This part was the one

which where we are blocked, because we need to compile our POP-C++ application with

parocc, and not with gcc.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

59 Report Barras Frédéric

Another library was the XcppRefl. To install it, we had to install xml2, and create a shortcut to it

in the directory /etc/bin, because the ./configure try to find xml2.pc, and the current version

named it libxml-2.0.pc. You also have to install the package Boost-dev (from the package

manager for Ubuntu or at this website: [7]) and include it to compile it with make. After that, we

had to find how this library functions, because there is no API furnished for it.

We used the following script (see appendix 8.10.1) and C code (see appendix 8.10.2) to make the

needed modifications to compile the library. The new codegenerator.cpp file is in the sources of

the CD, and the C file is under /sources/collective communication/tools. This file permit us to

change the include path in every file of the library, which were primarly wrong.

After several corrections of the code made by the developers of the library, we are now blocked

at a different place: the generation of the meta-classes, the classes which contain the

information about the class which have to be called through reflection, is not correct. Here is an

example of a correct generation of the class A:

#ifndef _A_H
#define _A_H

class A {
 public:
 A();
 void methodA1();
 void methodA2(int value);
 int methodA3();
 int methodA4(int value);

};
#endif

And his correct generation:

//gccxml: generate the xml file A.xml
#ifndef CPP_REFLECT_A_H
#define CPP_REFLECT_A_H

#include "src/ArrayType.hpp"
#include "src/ClassType_tmpl.hpp"
#include "src/FundamentalType.hpp"
#include "src/PointerType.hpp"

#include "src/MemberFunctionDcl.hpp"
#include "A.hpp"
namespace reflcpp {

template <typename Bottom_TP, typename Der_TP, int N>
class Bases<Bottom_TP, Der_TP, A, N> : public BaseList<Bottom_TP, A > {};

struct A_strings {
 static const char name[];
 static const char m_methodA1[];
 static const char m_methodA2[];
 static const char m_methodA3[];
 static const char m_methodA4[];
};

template <>
class Members <A>

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

60 Report Barras Frédéric

 : public MemberList<
 A,
 A_strings::name
 ,MemberFunctionDcl000<A, FundamentalType_tmpl<void>, &A::methodA1,

A_strings::m_methodA1>

 ,MemberFunctionDcl001<A,

FundamentalType_tmpl<void>,FundamentalType_tmpl<int>, &A::methodA2,

A_strings::m_methodA2>

 ,MemberFunctionDcl000<A, FundamentalType_tmpl<int>, &A::methodA3,

A_strings::m_methodA3>

 ,MemberFunctionDcl001<A, FundamentalType_tmpl<int>,FundamentalType_tmpl<int>,

&A::methodA4, A_strings::m_methodA4>

 >
{};
}
#endif

When we try to generate it, we get the following result:

//gccxml: generate the xml file A.xml
#ifndef CPP_REFLECT_A_H
#define CPP_REFLECT_A_H

// modified by Frederic BARRAS to use local files
#include "src/ArrayType.hpp"
#include "src/ClassType_tmpl.hpp"
#include "src/FundamentalType.hpp"
#include "src/PointerType.hpp"

#include "src/MemberFunctionDcl.hpp"
#include "A.hpp"
namespace reflcpp {

template <typename Bottom_TP, typename Der_TP, int N>
class Bases<Bottom_TP, Der_TP, A, N> : public BaseList<Bottom_TP, A > {};

struct A_strings {
 static const char name[];
 static const char m_methodA1[];
 static const char m_methodA2[];
 static const char m_methodA3[];
 static const char m_methodA4[];
};

template <>
class Members <A>
 : public MemberList<
 A,
 A_strings::name
 >
{};
}

#endif

All the declaration of the function members (methods, for example: methodA1) of the class are

not written in our file generation. This generation of files uses gccxml and codegenerator, a tool

developed by the programmers of reflcpp. I tried to use the same gccxml version as them

(version 0.6.0), and the actual latest version (0.7.0), but no changes were seen. After I received

the code of the tool codegenerator, I found an issue. In the method which generates the code for

public methods of a class, it was a test, to check if a method is public or not. The non-public

methods are not generated. The test was made in a wrong way; it compared the declaration of

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

61 Report Barras Frédéric

the method with an empty string instead of the reserved word “public”. Some other changes

were needed in the code generator: when a parameter is an array, the generated code had

syntax errors. I had to add spaces between the different templates to make it able to be

compiled.

For the compilation with POP-C++ (using parocc), the following errors occurred:

barraf@barraf-laptop:~/POPGroup$ parocc -o mainReflection.out mainreflection2.cc
Integer.cpp Integer.ph POPGroup.cpp POPGroup.hpp
Warning: class unique identifier (classuid) for Integer is not specified.
Integer_reflection.hpp:36: error: could not convert template argument
‘&Integer__parocobj::Set’ to ‘void (Integer::*)(int)’
Integer_reflection.hpp:37: error: could not convert template argument
‘&Integer__parocobj::Get’ to ‘int (Integer::*)()’
Integer_reflection.hpp:38: error: could not convert template argument
‘&Integer__parocobj::Add’ to ‘void (Integer::*)(int)’
Integer_reflection.hpp:39: error: could not convert template argument
‘&Integer__parocobj::Add2’ to ‘void (Integer::*)(int, int)’
Integer_reflection.hpp:40: error: could not convert template argument
‘&Integer__parocobj::Wait’ to ‘void (Integer::*)(int)’
Integer_reflection.hpp:41: error: could not convert template argument
‘&Integer__parocobj::Sum’ to ‘int (Integer::*)(int*)’
Integer_reflection.hpp:42: error: template argument 3 is invalid
Integer_reflection.hpp:42: error: template argument 4 is invalid
Integer_reflection.hpp:42: error: template argument 5 is invalid
Integer_reflection.hpp:42: error: template argument 6 is invalid
Integer_reflection.hpp:42: error: template argument 7 is invalid
Integer_reflection.hpp:42: error: template argument 8 is invalid

During the preprocessing of the POP-C++ parser, a problem occurs to convert templates of the

reflection with templates used in POP-C++. This issue is actually not corrected, due to a lack of

time. The template in Integer_reflection is trying to convert the method of Integer_parocobj, and

not the method from Integer which inherited from Interface. A clue could be linking the

Integer_reflection with one of the temporary files created during a compilation of a POP-C++

program, like for example _paroc3_interface.ph.cc.

Actually, the following problems are not resolved:

- When a method is using its own class in parameters, the execution fails, due to a recursive

call problem in the source code of the reflcpp library. (Example in class A : methodA1(A a);)

- When two methods have the same name, the application compilation fail, also when their

parameters are different.

- Impossible to compile in POP-C++ with parallel objects.

An idea to simplify the implementation of POPGroup is to create non-modifiable groups. When

creating the groups, a defined number of objects will be created in the group, and you will have

no possibility to change this group. It will be no AddMember and RemoveMember for example.

After some research, we saw that this solution doesn’t simplify the problem. Our main issue is

calling a method on the object, without knowing before the compilation time.

5.2. Possible improvements

Here are several improvements which can be done for the actual state of the library:

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

62 Report Barras Frédéric

- Realize the precompilation script which generates the reflection files from the .ph files.

- Find a way to compile it in POP-C++, by finding how to link the methods in the

POPGroup.cpp, Object_reflection.cpp and Object_reflection.hpp to the interface which

inherits from the Object.

- Improve the complexity of the library. Until now, a broadcast is done with a complexity of N.

By finding a solution like create a logical tree between the members of the group to

propagate the method call, we can obtain a complexity of Log(N). Each member will have the

knowledge about his neighborhood, and will send to his sons in the tree the method call

received by his father. Another solution can be the call of synchronous methods in different

threads.

- Improve the reflcpp library, by correcting the actual issues and adapt it to be compiled with

POP-C++.

5.3. Personal conclusion

The conception of this library is correct; the only problem is the implementation of the reflection in

C++. It was an interesting theme, which let a lot of improvements possible. Like find a way to

distribute the messages among a structure like a tree between the objects in a POPGroup. Trying to

correct the reflcpp library with its developers was an interesting experience, and I saw the

importance of describing as clearly as possible the encountered problems.

This version of the POPGroup library will be slower in execution than the one which modifies the

parser, due to all the work done by the reflcpp library. It has to check for the right method in its

dictionary, then to have an implementation of the class, and finally call the method. It also has more

limitations, like the number of arguments available.

The next chapter is the final conclusion of this project. It will talk about the planning and the project

in general.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

63 Report Barras Frédéric

General conclusion

1. Personal

This was an interesting project with a lot of new fields to discover and study. It gave me a good idea

how to plan several projects, the time needed to realize different tasks and the best method to keep

a report up-to-date. One of the biggest difficulties was to choose when we should finish the first task

and get into the second one.

2. Planning

The planning changed several times, due to the fact that at the beginning, we had no clue about

collective communications. We realized two tasks, and the last two ones were cancelled, according

to the decision of M. Kuonen (see meeting minutes from the 10/26/07).

For the first task, the planning was completely followed. All the tasks were realized on time, and we

respected the schedule we had to use the UNM PHOENIX Cluster.

For the second task, I completely followed the planning until the 2
nd

 of November. The task

implement the library and using reflection in POP-C++ took me the rest of the time at disposition (See

4.2 Actual state of development and 5.1 encountered problems in the second task for more

information).

3. Thanks{common}

We’d like to thank all the persons who helped us for this project:

- the responsible professors in Fribourg:

o Pierre Kuonen: for his support and advices during the entire project and for giving us

the possibility to accomplish it in Albuquerque.

o François Kilchoer: for his support and advices during the entire project and for the

report corrections.

o Jean-François Roche: for his advices during the entire project and his support in

organizational tasks.

o Guilherme Peretti Pezzi: for his support and advices to solve technical issues with

POP-C++.

- The responsible externs :

o Thuan-Anh Nguyen: for his help to solve issues with POP-C++ on the cluster and for

providing the lexer and grammar source files

o Barney Maccabe: for giving us the possibility to come to Albuquerque and all the

organizational tasks. And for giving us a good environment to work on our project.

o Rolf Riesen: for his help to understand MPI and collective communications. For his

advices during the second task.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

64 Report Barras Frédéric

o the developers of the reflpcc library for their support when we used their library and

for their availability:

� Tharaka Devadithya (Indiana University, USA)

� Kenneth Chiu (SUNY Binghamton, USA)

� Wei Lu (Indiana University, USA)

The next chapter, after this conclusion, will be the appendixes. You will find every reference I used,

the different websites which could be useful, and the code of the applications developed.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

65 Report Barras Frédéric

Appendix

1. Definitions

Benchmarking

Performance test of a system.

Broker (POP-C++)

Part on the remote machine which receives the messages from the network and translate them

into methods

Cluster

Supercomputer which contains several nodes composed from memory and processor.

Combox (POP-C++)

Part which is responsible for the communication between the remote and local part of an object

(with sockets).

CVS Concurrent Versions System

 System which permits to depose and get different versions of files and applications.

Deviation, standard

Mathematical operation which indicates the typical deviation of values compared to their

average.

Grid group

Name of the group which works on POP-C++ and Gris at the EIA-FR Fribourg.

HPC High Performance Computing

Field of the distributed computer science which focus on applications which needs a lot of

resources to for calculus.

InfiniBand

Computer communication bus with low latency.

Interface (POP-C++)

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

66 Report Barras Frédéric

Part on the local machine which is responsible to get the method call of the main program and

to send them to the remote part, through the buffer and combox.

JobManager (POP-C++)

Part which is responsible for finding machines which require the minimal resources asked by an

object.

Linux

Operating System based on UNIX.

Meta-class

Class which contains information about a class, like its name, its method name, etc

MPI Message Passing Interface

Standard for collective communications.

NFS Network File System

File system distributed among several computers. Every computer sees the same file system.

parclass (POP-C++)

Parallel class describing an object which can be stored remotely.

Parser

Application which goes through a text and generate an output regarding this text.

POE Parallel Operating Environment.

Environment designed for parallel applications, with several computers, clusters.

POP-C++

Parallel language, developed at the EIA-FR Fribourg.

Process

Set of executable instructions.

Reflection

Principle which permit to cast a string into a method call.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

67 Report Barras Frédéric

Runtime

Time during the execution of a program.

SPMD Simple Program Multiple Data

Type of program which has one source code, and several behaviors among the data

Tick

Instruction cycle of a processor.

UML Unified Modeling language

Analysis and conception graphical language.

UNM University of New Mexico

University of the city of Albuquerque, New Mexico, USA, where this project was realized.

2. References

[1] Translation from http://www.eif.ch/gestionprojets/private/rechercher.jsp?inoid=1620

[2] Summer 2007 semester report « WSL with POP-C++ », available in the library from the

EIAFR.Erreur ! Signet non défini.

[3] http://www.iis.sinica.edu.tw/~kathy/vcstl/templates.htm

[4] Diploma work report: “Improving POP-C++ for HPC” , Manuel Schrag, November 2007, available

on the CD of this project

[5] Manuel reference for POP-C++, user guide, version 1.1, EIAFR Fribourg, Gridgroup

 http://www.eif.ch/gridgroup/popc/docs/manual.pdf

[6] http://www.extreme.indiana.edu/reflcpp/ : website for the reflcpp library

[7] http://www-eleves-isia.cma.fr/documentation/BoostDoc/boost_1_29_0/more/download.html :

website for Boost

[8] http://home.hefr.ch/schram04/diplomawork/: website for this project

[9] http://www.cs.unm.edu/~riesen/lesson_10.pdf : Illustration of MPI functions

[10]http://seal-reflex.web.cern.ch/seal-reflex/index.html :website of the Reflex library

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

68 Report Barras Frédéric

3. Links

http://www.mhpcc.edu/training/workshop/mpi/MAIN.html : an English explanation about MPI

concepts and structures.

www.mpi-forum.org : official English forum about MPI, contains the official documents and releases.

http://en.wikipedia.org/wiki/Computer_cluster : Explanation of what is a cluster computer.

http://www.eif.ch/gridgroup/popc/docs/manual.pdf : Manual Reference for POP-C++.

http://www-unix.mcs.anl.gov/mpi/ : Explanation of MPI.

http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Init.txt: Explanation of MPI_Init

function.

http://fresh.t-systems-sfr.com/unix/src/privat2/openmpi-1.2.3.tar.gz:a/openmpi-

1.2.3/ompi/mpi/man/man3/MPI_Comm_spawn.3 : Explanation of MPI_Comm_spawn function.

http://en.wikipedia.org/wiki/Reflection_(computer_science): explanation about Reflection concept

http://www.iis.sinica.edu.tw/~kathy/vcstl/templates.htm: a good explanation about templates in

C++

http://seal-reflex.web.cern.ch/seal-reflex/index.html : Website of a non-used library for this project.

http://www.extreme.indiana.edu/reflcpp/: Website of the library realizing reflection for C++ used for

this project.

http://www-eleves-isia.cma.fr/documentation/BoostDoc/boost_1_29_0/more/download.html:

Website for the download and installation of the Boost tool.

4. Figures

Figure 1 – POP-C++ Class Diagram .. 10

Figure 2 – Object creation in POP-C++ .. 11

Figure 3 - Distributed Memory Sytem[2] .. 12

Figure 4 - simplified sequence diagram of object creation without Job Manager 15

Figure 5 - simplified sequence diagram of object creation with Job Manager 16

Figure 6 - MPI_Init() with several processes ... 18

Figure 7 - runtime initialization prediction model .. 22

Figure 8 - Processes/Objects initialization prediction model .. 23

Figure 9 - time initialization prediction model .. 24

Figure 10 - Launch of the runtimes ... 25

Figure 11 - runtime launch comparison .. 26

Figure 12 - initialization of the objects/processes .. 27

Figure 13 - processes initialization comparison .. 28

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

69 Report Barras Frédéric

Figure 14 - Objects initialization comparison .. 29

Figure 15 - launch of the runtime + initialization of the objects/processes ... 30

Figure 16 - Total processes initialization comparison ... 31

Figure 17 - Total objects initialization comparison ... 31

Figure 18 - MPI broadcast[9] ... 36

Figure 19 MPI Scatter [9] .. 36

Figure 20 MPI Gather [9] ... 36

Figure 21 MPI Reduce [9] .. 37

Figure 22 MPI Allgather [9] ... 37

Figure 23 MPI All-to-All [9] .. 37

Figure 24 MPI Allreduce [9] ... 37

Figure 25 POP-C++ Broadcast .. 38

Figure 26 POP-C++ Scatter .. 38

Figure 27 POP-C++ Gather ... 38

Figure 28 POP-C++ Reduce .. 38

Figure 29 POP-C++ Allgather ... 39

Figure 30 POP-C++ All-to-all .. 39

Figure 31 POP-C++ Allreduce... 39

Figure 32 - use case ... 41

Figure 33 - create a group sequence diagram ... 42

Figure 34 - modify a group sequence diagram .. 43

Figure 35 - add an object sequence diagram .. 44

Figure 36 - remove an object sequence diagram .. 44

Figure 37 - get rank sequence diagram ... 45

Figure 38 - Merge Groups sequence diagram ... 46

Figure 39 - collective method call sequence diagram ... 47

Figure 40 - broadcast sequence diagram .. 48

Figure 41 - gather diagram sequence .. 48

Figure 42 - reduce diagram sequence ... 49

Figure 43 - scatter sequence diagram ... 50

Figure 44 - POPGroup class diagram ... 51

5. Tables

Tableau 1 - color code of the graphs ... 21

Tableau 2 - prediction equations .. 22

Tableau 3 - percentage comparison for objects/processes creation .. 28

Tableau 4 - percentage comparison for total initialization ... 30

Tableau 5 - standard deviation .. 33

Tableau 6 - standard deviation of the total initialization .. 33

Tableau 7 - 1 Explanation and visualization of MPI collective communication functions 37

Tableau 8 - Explanation and visualization of POP-C++ collective communication functions 39

Tableau 9 - decrementation algorithm ... 45

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

70 Report Barras Frédéric

Tableau 10 - abstract of the translation of standard method to collective method 53

6. CD content

7. Planning

Please refer to the webpage to see the final planning and the different versions.

8. Sources

8.1. runTests
#!/bin/bash
Runs the test with different values
remove the old compiled files
rm -f objmap emptymainmpi emptymainpopc *.o mpi/*.out \
popc/*.o popc/objmap popc/*.obj popc/*.out
./compilations
#USAGE : startBenchmarks resultfile NBProcesses NBObjects NbNodes NbChildren
#1 2 4 6 8 10 12 14 16

The documentation contains the report and other usefuls

documents, like the article about reflcpp.

The collective communication sources contain the example

of reflection with A and B, and the POPGroup library. Tools

contains the code generator modified and some other useful

tools.

The comparison sources contains the source codes under

mpi and popc. The results are under the directory result (see

the .xls files).

The website is under the directory website. Open Index.php

to see it.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

71 Report Barras Frédéric

for i in 1 2 4 6 8 10 12 14 15
do
prefix=$i.Nodes
suffix=$(date +%b%d%y)
filename=$prefix.$suffix
./startBenchmarks resultnn/$filename $i $i $i $i
done

8.2. startBenchmarks
#!/bin/bash
Check parameters

if [$# -ne 5]; then
 echo USAGE : startBenchmarks resultfile NBProcesses NBObjects NbNodes NbChildren
 exit 1
fi
echo ---
echo !!!Please start the SXXparoc deamon and the mpi deamon before launching this
script!!!
echo ---

-------------------------------MEASURES-----------------
#measure of the runtime executables
echo TEST RESULTS>$1
for i in 1 2 3 4 5 6 7 8 9 10
do
 #MPI
echo --->>$1
echo MPI executable>>$1
echo --->>$1
{ time mpirun -n $2 -hostfile hostfile ./emptymainmpi; } 2>> $1
 #POP-C++
echo --->>$1
echo POPC executable>>$1
echo --->>$1
{ time parocrun objmap ./emptymainpopc; } 2>> $1
done

#measure of the object/process creation
for j in 1 2 3 4 5 6 7 8 9 10
do
 #MPI Static
echo --->>$1
echo MPI Initialization static>>$1
echo --->>$1
 mpirun -n $2 -hostfile hostfile mpi/mainstatic.out>>$1
 #MPI Dynamic
echo --->>$1
echo MPI Initialization dynamic>>$1
echo --->>$1
 mpirun -n 1 -hostfile hostfile mpi/maindynamic.out $5 >>$1
 #POP-C++ without jobManager
echo --->>$1
echo POP-C++ Initialization without JobManager>>$1
echo --->>$1
 parocrun popc/objmap popc/main.out $3 false>>$1
 sleep 10
#echo canceled, cluster cannot work without jobManager >>$1
 #POP-C++ with jobManager
echo --->>$1
echo POP-C++ initialization with jobManager>>$1
echo --->>$1
 parocrun popc/objmap popc/main.out $3 true>>$1
 sleep 10

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

72 Report Barras Frédéric

done

echo --->>$1
echo Time Measure>>$1
echo --->>$1
parocrun popc/objmap popc/cycleTest.out >>$1

8.3. myObject.ph
#include <string.h>
/* Header file from the object MyObject, used in the measure from POP-C++
initialization */
parclass MyObject
{
public:
 MyObject(int wanted, int minp) @{ power= wanted ?: minp;};
 MyObject(paroc_string machine) @{ od.url(machine);};
 ~MyObject();

};

8.4. myObject.cc
#include <stdio.h>
#include "myObject.ph"
//#include <unistd.h>
#ifdef _PAROC_
#define printf rprintf
#endif
/* CC file from the object MyObject, used in the measure from POP-C++
initialization
 The prints are here to test if every object is really created at the good place.
They
 have to be put in comment for the real time of initialization test
 */

MyObject::MyObject(int wanted, int minp)

{
//rprintf("Object MyObject on %s\n",(const char *)paroc_system::GetHost());
}

MyObject::MyObject(paroc_string machine)

{
 // rprintf("Object MyObject on %s\n",(const char *)paroc_system::GetHost());
}

MyObject::~MyObject()

{
 //printf("Destroying the object...\n");
}

@pack(MyObject);

8.5. Main.cc
#include "myObject.ph"
#include <iostream.h>
#include <unistd.h>
//#include <time.h>
#include "cycle.h"
/* main file, used in the measure from POP-C++ initialization
 It takes arguments to know the number of objects to create
 and if you use the Jobmanager or not.
*/
int main(int argc, char **argv)

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

73 Report Barras Frédéric

{
 if (argc != 3) {
 printf ("Usage: init nbObjects boolwithjobMgr \n");
 return 1;
 }
 int nbObjects = atoi(argv[1]);
 bool withJobMgr= strcmp(argv[2],"true")==0?true:false;
 ticks t0,t1;
 double elapsedTime=-1;
 printf("nbObjects = %d, and job = %d \n",nbObjects,withJobMgr);

char* myNodes[16]={"phx0","phx1","phx2",
 "phx3","phx4","phx5","phx6",
 "phx7","phx8","phx9","phx10","phx11",
 "phx13","phx14","phx_head","phx12"};
 try {
 t0 = getticks();
 if (withJobMgr){
 for (int i=0;i<nbObjects;i++){
 MyObject o1(60,40);
 }
 }
 else{
 for (int j=0;j<nbObjects;j++){
 MyObject o2(myNodes[j]);
 }
 }
 t1 = getticks();
 elapsedTime= elapsed(t1,t0);
 printf("elapsed time for all objects creation= %f (with job :
%d\n",elapsedTime,withJobMgr);
 }
 catch (paroc_exception *e)
 {
 cout<<"Object creation failure"<<"\n";
 return -1;
 }
 return 0;
}

8.6. Mainstatic.c
/* MPI creation of processes */
#include <stdio.h>
#include <mpi.h>
#include "cycle.h"
//#include <unistd.h>

int main (argc, argv)

 int argc;
 char *argv[];
{
 int myRank,i;
 double localMax, globalMax;
 ticks t0,t1;

 t0 = getticks();
 MPI_Init (&argc, &argv); /* starts MPI */
 t1 = getticks();
 /*Get the time to make the init*/
 localMax= elapsed(t1,t0);
 globalMax= -1;
 MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
 /* Make a reduce to get the highest value between all the processes*/

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

74 Report Barras Frédéric

 MPI_Reduce(&localMax, &globalMax,1,MPI_DOUBLE,MPI_MAX,0,MPI_COMM_WORLD);
 if (myRank==0){
 printf("Highest value between all the processes for MPI_Init :%f
\n",globalMax);
 }
 //char hostname[256];
 //gethostname(hostname,256);
 //printf("i'm on host %s \n",hostname);
MPI_Finalize();
 return 0;
}

8.7. Maindynamic.c
/* MPI creation of processes */
#include <stdio.h>
#include <mpi.h>
#include "cycle.h"

int main (argc, argv)

 int argc;
 char *argv[];
{
if (argc != 2) {
 printf ("Usage: maindynamic Nbchildren \n");
 return 1;
 }
 int myRank,i;
 double localMax, globalMax;
 ticks t0,t1;
 MPI_Init (&argc, &argv); /* starts MPI */
 MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
 /* Testing of the MPI_Comm_spawn method*/
 int nbChild=atoi(argv[1]);
 //printf("NB Children : %d\n",nbChild);
 int errcodes[nbChild];
 MPI_Comm intercomm;
 char* myArgv[]={"-hostfile","hostfile",NULL};
t0 = getticks();
 if (0!=MPI_Comm_spawn("mpi/child.out",myArgv, nbChild, MPI_INFO_NULL, 0,
MPI_COMM_WORLD, &intercomm, errcodes)){
 return 1;
}
t1 = getticks();
 if (myRank==0){
 localMax= elapsed(t1,t0);
 printf("childs called by me, i'm rank %d\ntime to make MPI_Comm_spawn :
%f\n",myRank,localMax);
}
MPI_Finalize();
 return 0;
}

8.8. Child.c
#include <stdio.h>
#include <mpi.h>
#include "cycle.h"
//#include <unistd.h>
/*Child process which will be created, do nothing else as just call MPI_Init and
return*/
int main (argc, argv)

 int argc;
 char *argv[];
{

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

75 Report Barras Frédéric

 MPI_Init(&argc, &argv);
 //TO Test if children are created
 //int myRank;
 //MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
 //char hostname[256];
 //gethostname(hostname,256);
 //printf("i'm the child number %d on %s \n",myRank,hostname);
 MPI_Finalize();
}

8.9. Code source for total initialization

8.9.1. Objectpop.ph

#include <string.h>
/* Header file from the object MyObject, used in the measure from POP-C++
initialization */
parclass ObjectPop
{
public:
 ObjectPop(int wanted, int minp) @{ power= wanted ?: minp;};
 ObjectPop(paroc_string machine) @{ od.url(machine);};
 ~ObjectPop();

};

8.9.2. Objectpop.cc

#include <stdio.h>
#include "objectpop.ph"
#include <stdlib.h>
#ifdef _PAROC_
#define printf rprintf
#endif
/* CC file from the object MyObject, used in the measure from POP-C++
initialization
 The prints are here to test if every object is really created at the good place.
They
 have to be put in comment for the real time of initialization test
 */

ObjectPop::ObjectPop(int wanted, int minp)

{
 //rprintf("Object MyObject on %s\n",(const char *) paroc_system::GetHost());
 //exit(-1);
}

ObjectPop::ObjectPop(paroc_string machine)

{
 //rprintf("Object MyObject on %s\n",(const char *)paroc_system::GetHost());
 //exit(-1);
}

ObjectPop::~ObjectPop()

{
 //printf("Destroying the object...\n");
}

@pack(ObjectPop);

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

76 Report Barras Frédéric

8.9.3. Mainpop.cc

#include "objectpop.ph"
#include <iostream.h>
#include <unistd.h>
#include <stdlib.h>
/* main file, used in the measure from POP-C++ initialization
 It takes arguments to know the number of objects to create
 and if you use the Jobmanager or not.
*/
int main(int argc, char **argv)

{
 if (argc != 3) {
 printf ("Usage: init nbObjects boolwithjobMgr \n");
 return 1;
 }
 int nbObjects = atoi(argv[1]);
 bool withJobMgr= strcmp(argv[2],"true")==0?true:false;
 //printf("nbObjects = %d, and job = %d \n",nbObjects,withJobMgr);
// char* myNodes[16]={"localhost","localhost","localhost","localhost",
// "localhost","localhost","localhost","localhost",
// "localhost","localhost","localhost","localhost",
// "localhost","localhost","localhost","localhost"};
char* myNodes[16]={"phx0","phx1","phx2",
 "phx3","phx4","phx5","phx6",
 "phx7","phx8","phx9","phx10","phx11",
 "phx13","phx14","phx_header","phx12"};
 try {
 if (withJobMgr){
 for (int i=0;i<nbObjects;i++){
 ObjectPop o1(60,40);
 }
 }
 else{
 for (int j=0;j<nbObjects;j++){
 ObjectPop o2(myNodes[j]);
 }
 }
 //exit(-1);
 }
 catch (paroc_exception *e)
 {
 cout<<"Object creation failure"<<"\n";
 return -1;
 }
 return 0;
}

8.9.4. Mainstatic.c

/* MPI creation of processes */
//#include <stdio.h>
#include <mpi.h>
#include <stdlib.h>

int main (argc, argv)

 int argc;
 char *argv[];
{

 MPI_Init (&argc, &argv); /* starts MPI */
 exit(-1);
MPI_Finalize();
 return 0;
}

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

77 Report Barras Frédéric

8.9.5. Maindynamic.c

/* MPI creation of processes */
//#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main (argc, argv)

 int argc;
 char *argv[];
{
//if (argc != 2) {
// printf ("Usage: maindynamic Nbchildren \n");
// return 1;
// }
 //int myRank,i;
 MPI_Init (&argc, &argv); /* starts MPI */
 //MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
 /* Testing of the MPI_Comm_spawn method*/
 int nbChild=atoi(argv[1]);
 //printf("NB Children : %d\n",nbChild);
char* myArgv[]={"-hostfile","hostfile",NULL};
 int errcodes[nbChild];
 MPI_Comm intercomm;
 if (0!=MPI_Comm_spawn("./childdynamic.out", myArgv, nbChild, MPI_INFO_NULL, 0,
MPI_COMM_WORLD, &intercomm, errcodes)){
 return 1;
}

 //if (myRank==0){
 //localMax= elapsed(t1,t0);
 //printf("childs called by me, i'm rank %d\ntime to make MPI_Comm_spawn :
%f\n",myRank,localMax);
//}
 exit(-1);
MPI_Finalize();
}

8.9.6. Childdynamic.c

//#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

/*Child process which will be created, do nothing else as just call MPI_Init and
return*/
int main (argc, argv)

 int argc;
 char *argv[];
{
 MPI_Init(&argc, &argv);
 //exit(-1);
 MPI_Finalize();
}

8.10. Source code part 2

8.10.1. Copydir

#! /bin/bash

./modifyFiles.out
 #copy the new files in the correct directory
cp -ru $1/ ./

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

78 Report Barras Frédéric

8.10.2. modifyFiles

#include <stdio.h>
#include <string.h>

int main()
{
const int LINE_MAX=1000;
const int MAX_FILENAME=100;

const char* HPP= ".hpp>";
FILE* outFile;
FILE* inFile;
FILE* listFile;

char currentLine[LINE_MAX];
char fileName[MAX_FILENAME];
char outFileName[MAX_FILENAME];
outFileName[0]='s';
outFileName[1]='r';
outFileName[2]='c';

listFile=fopen("testin","r");
if(listFile!=NULL)
{
 while(!feof(listFile))
 {
 fscanf(listFile,"%s\n",fileName);
 printf("converting file :[%s]\n",fileName);

 char* localName= strrchr(fileName,'/');
 printf("localName : [%s]\n",localName);

 outFileName[3]='\0';
 strcat(outFileName,localName);
 printf("outFile name = [%s]\n",outFileName);

 if ((inFile = fopen(fileName,"r"))!=NULL)
 {
 if ((outFile=fopen(outFileName,"w"))!=NULL)
 {
 while(!feof(inFile))
 {
 currentLine[0]='\0';
 if (fgets(currentLine, LINE_MAX, inFile)!=NULL) //EOF encountered
 {
 printf("converting line:[%s]\n",currentLine);
 if (strstr(currentLine, HPP)!=NULL)
 {
 char* p;
 if ((p=strstr(currentLine, "<src/"))!=NULL)
 {
 p[0] = ' '; p[1] = ' '; p[2] = ' '; p[3] = ' ';
 p[4]='"';
 p=strstr(currentLine, ">");
 *p = '"';
 }
 else
 {
 if ((p=strstr(currentLine, "<"))!=NULL)
 {
 p[0]='"';
 p=strstr(currentLine, ">");
 *p = '"';
 }
 }

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

79 Report Barras Frédéric

 } //if
 }
 //printf("%s", currentLine);
 fprintf(outFile,"%s", currentLine);
 } //while
 } //if
 else printf("Unable to open outfile %s\n",outFileName);
 } //if
 else printf("Unable to open infile %s\n",fileName);
 printf("closing files IN and OUT\n");
 fclose(inFile);
 fclose(outFile);
 }//while
 printf("closing files ListFile\n");
 fclose(listFile);
} //if
 else printf("cannot open :%s or testout\n",listFile);

 //Copy of the needed files
char* directory= strchr(fileName,'/');

} //main

8.10.3. A.cpp

#include "A.hpp"
#include <stdio.h>

A::A(){

 printf("Object A constructed\n");
}

void A::methodA1(){

 printf("\nCall method1 on Object A \n");
}

void A::methodA2(int value){

 printf("Call method2 on Object A with value=[%d] \n",value);
}

int A::methodA3(){

 printf("Call method3 on Object A \n");
 return 14;
}

int A::methodA4(int value){

 printf("Call method4 on Object A with value=[%d] \n",value);
 return value*2;
}
int A::methodA5(int value1, int value2){

printf("Call method5 on Object A with value1=[%d] and
value2=[%d]\n",value1,value2);
return value1+value2;
}

void A::methodA6(int value1, int value2){

printf("Call method6 on Object A with value1=[%d] and
value2=[%d]\n",value1,value2);
}

/*
void A::methodA7(A a){

printf("Call methodA7 on A with non primitive parameter\n");
}
*/

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

80 Report Barras Frédéric

8.10.4. A.hpp

#ifndef _A_H
#define _A_H

class A {
 public:
 A();
 void methodA1();
 void methodA2(int value);
 int methodA3();
 int methodA4(int value);
 int methodA5(int value1, int value2);
 void methodA6(int value1, int value2);
 //void methodA7(A a);

};

#endif

8.10.5. B.cpp

#include <stdio.h>
#include <string.h>
#include "B.hpp"

#include "src/ClassType.hpp"
//Includes made by the main.cpp in examples.
//#include "src/ClassType_tmpl.hpp"
#include "src/BoundClassType_tmpl.hpp"
#include "src/Exceptions.hpp"
#include "A_reflection.hpp"

using namespace reflcpp;

B::B(){

 printf("Object B constructed\n");
}

void B::doMethod(A &object){

 printf("\nCall doMethod on Object B \n");
 ClassType ct = ClassType::getClass("A");
 std::string className = ct.name();
 printf("Name of the class : [%s]\n",className.c_str());

 //first method call, without return or parameter
 printf("Get an instance of the methode 'methodA1' of A\n");
 MemberFunction mf =ct.getMemberFunction("methodA1");
 printf("Invoke 'methodA1' on A\n");
 mf.invoke<void>(&object);

 //second method call, with parameter and no returns
 printf("Get an instance of the methode 'methodA2' of A\n");
 MemberFunction mf2 =ct.getMemberFunction("methodA2");
 printf("Invoke 'methodA2' on A, (value should be [4])\n");
 int myValue[1];
 myValue[0]=4;
 //Arguments params; //FundamentalType
 //params.addValueArgument(*myValue);
 printf("\n !!! invocation !!!");
 mf2.invoke<void>(&object,*myValue);

 //third method call, with return and no parameter
 printf("Get an instance of the methode 'methodA3' of A\n");
 MemberFunction mf3 =ct.getMemberFunction("methodA3");

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

81 Report Barras Frédéric

 printf("Invoke 'methodA3' on A\n");
 int resultMethod3;
 resultMethod3=mf3.invoke<int>(&object);
 printf("Value of return method 3 (should be [14]) = [%d]\n",resultMethod3);

 //fourth method call, with return and parameter
 printf("Get an instance of the methode 'methodA4' of A\n");
 MemberFunction mf4 =ct.getMemberFunction("methodA4");
 printf("Invoke 'methodA4' on A, (value should be 4*2=[8])\n");
 int myValue4[1];
 int resultMethod4;
 myValue4[0]=4;
 resultMethod4=mf4.invoke<int>(&object,*myValue4);
 printf("Value of return method 4 (should be [8]) = [%d]\n",resultMethod4);

 //fifth method call, with return and 2 parameters
 printf("Get an instance of the methode 'methodA5' of A\n");
 MemberFunction mf5 =ct.getMemberFunction("methodA5");
 printf("Invoke 'methodA5' on A, (value should be 4+8=[12])\n");
 int myValue5[1];
 int resultMethod5;
 myValue5[0]=4;
 int myValue5bis[1];
 myValue5bis[0]=8;
 resultMethod5=mf5.invoke<int>(&object,*myValue5,*myValue5bis);
 printf("Value of return method 5 (should be [12]) = [%d]\n",resultMethod5);

/*

 printf("Get an instance of the methode 'methodA7' of A\n");
 MemberFunction mf7 = ct.getMemberFunction("methodA7");
 printf("Invoke 'methodA7' on A\n");
 A paramA;
 mf7.invoke<void>(&object,paramA);
*/
}

8.10.6. B.hpp

#ifndef _B_H
#define _B_H
#include "A.hpp"

class B {
 public:
 B();
 void doMethod(A &object);

};

#endif

8.10.7. A_reflection.cpp

//gccxml: generate the xml file A.xml
#include "A_reflection.hpp"

namespace reflcpp {

namespace {
 ClassType_tmpl<A> inserter;
}

const char A_strings::name[] = "A";
const char A_strings::m_methodA1[] = "methodA1";

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

82 Report Barras Frédéric

const char A_strings::m_methodA2[] = "methodA2";
const char A_strings::m_methodA3[] = "methodA3";
const char A_strings::m_methodA4[] = "methodA4";
const char A_strings::m_methodA5[] = "methodA5";
const char A_strings::m_methodA6[] = "methodA6";
} // namespace reflcpp

8.10.8. A_reflection.hpp

//gccxml: generate the xml file A.xml
#ifndef CPP_REFLECT_A_H
#define CPP_REFLECT_A_H

#include "src/ArrayType.hpp"
#include "src/ClassType_tmpl.hpp"
#include "src/FundamentalType.hpp"
#include "src/PointerType.hpp"
#include "src/MemberFunctionDcl.hpp"
#include "A.hpp"
namespace reflcpp {

template <typename Bottom_TP, typename Der_TP, int N>
class Bases<Bottom_TP, Der_TP, A, N> : public BaseList<Bottom_TP, A > {};

struct A_strings {
 static const char name[];
 static const char m_methodA1[];
 static const char m_methodA2[];
 static const char m_methodA3[];
 static const char m_methodA4[];
 static const char m_methodA5[];
 static const char m_methodA6[];
};

template <>
class Members <A>
 : public MemberList<
 A,
 A_strings::name
 ,MemberFunctionDcl000<A, FundamentalType_tmpl<void >, &A::methodA1,
A_strings::m_methodA1 >
 ,MemberFunctionDcl001<A, FundamentalType_tmpl<void >,FundamentalType_tmpl<int
>, &A::methodA2, A_strings::m_methodA2 >
 ,MemberFunctionDcl000<A, FundamentalType_tmpl<int >, &A::methodA3,
A_strings::m_methodA3 >
 ,MemberFunctionDcl001<A, FundamentalType_tmpl<int >,FundamentalType_tmpl<int
>, &A::methodA4, A_strings::m_methodA4 >
 ,MemberFunctionDcl002<A, FundamentalType_tmpl<int >,FundamentalType_tmpl<int
>,FundamentalType_tmpl<int >, &A::methodA5, A_strings::m_methodA5 >
 ,MemberFunctionDcl002<A, FundamentalType_tmpl<void >,FundamentalType_tmpl<int
>,FundamentalType_tmpl<int >, &A::methodA6, A_strings::m_methodA6 >
 >
{};

}

#endif

8.10.9. mainAB.cpp

#include "B.hpp"
#include "A.hpp"
#include "POPGroup.cpp"

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

83 Report Barras Frédéric

int main(){

 printf("\nstart of the Test\n");
 A a;
 B b;
 b.doMethod(a);
}

8.10.10. main.cpp

//#include "B.hpp"
#include "A.hpp"
#include "POPGroup.cpp"
//#include "Integer.ph"
#include <iostream>

int main(int arc, char* argv[]){

 try{

 printf("\n\n !!! Test with POPGroup !!! \n\n");
 printf("-----------Creation, add and remove---------\n");
 A a;
 A a2;
 A a3;
 A a4;
 POPGroup<A> myGroup("A");

 myGroup.add(a);
 myGroup.add(a2);
 myGroup.add(a3);
 myGroup.add(a4);
 printf("Size of the group (should be [4]) : [%d]\n",myGroup.getSize());

 myGroup.removeAt(3);
 printf("Size of the group (should be [3]) : [%d]\n",myGroup.getSize());
 A atab[4];
 myGroup.add(atab,4);
 printf("Size of the group (should be [7]) : [%d]\n",myGroup.getSize());
 myGroup.remove(atab,4);
 printf("Size of the group (should be [3]) : [%d]\n",myGroup.getSize());

 POPGroup<A> myGroup2("A");
 myGroup2.add(a);
 myGroup.merge(myGroup2);
 printf("Size of the group (should be [4]) : [%d]\n",myGroup.getSize());
//Group merging

 /* broadcast*/
 printf("----------BROADCASTS----------\n");
 myGroup.broadcast("methodA1");
 myGroup.broadcast("methodA2",12);
 myGroup.broadcast("methodA6",22,33);
/*scatter*/
printf("----------SCATTERS----------\n");
 int scattarg1[myGroup.getSize()];
 int scattarg2[myGroup.getSize()];
 for (int i=0;i<myGroup.getSize();i=i+1){
 scattarg1[i]=i;
 scattarg2[i]=10+i;
 }
 myGroup.scatter("methodA2",scattarg1,myGroup.getSize());
 myGroup.scatter("methodA6",scattarg1,scattarg2,myGroup.getSize());
/*broadcastGather*/
 printf("----------BROADCASTGATHERS----------\n");
 int gatherResult[myGroup.getSize()];
 myGroup.broadcastGather("methodA3",gatherResult);
 for (int i=0;i<myGroup.getSize();i=i+1)

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

84 Report Barras Frédéric

 printf("result from broadcastgather(0 param) (should be [%d]) for object [%d]
: [%d]\n",14,i,gatherResult[i]);
 myGroup.broadcastGather("methodA4",14,gatherResult);
 for (int i=0;i<myGroup.getSize();i=i+1)
 printf("result from broadcastgather(1 param) (should be [%d]) for object [%d]
: [%d]\n",14*2,i,gatherResult[i]);
 myGroup.broadcastGather("methodA5",23,43,gatherResult);
 for (int i=0;i<myGroup.getSize();i=i+1)
 printf("result from broadcastgather(2 params) (should be [%d]) for object
[%d] : [%d]\n",23+43,i,gatherResult[i]);
/*broadcastReduce*/
printf("----------BROADCASTREDUCES----------\n");
 int reduceResult[1];
 myGroup.broadcastReduce("methodA3",reduceResult,0);//POPGROUP_OPERATION_MAX
 printf("result from broadcastreduce(0 param) (shoudld be [%d]) for Group :
[%d]\n",14,reduceResult[0]);
 myGroup.broadcastReduce("methodA4",14,reduceResult,0);
 printf("result from broadcastreduce(1 param) (shoudld be [%d]) for Group :
[%d]\n",14*2,reduceResult[0]);
 myGroup.broadcastReduce("methodA5",23,43,reduceResult,0);
 printf("result from broadcastreduce(2 param) (shoudld be [%d]) for Group :
[%d]\n",23+43,reduceResult[0]);

/*scattergather*/
printf("----------SCATTERGATHERS----------\n");

myGroup.scatterGather("methodA4",scattarg1, gatherResult, myGroup.getSize());
for (int i=0;i<myGroup.getSize();i=i+1)
 printf("result from scattergather(1 param) (should be [%d]) for object [%d] :
[%d]\n",scattarg1[i]*2,i,gatherResult[i]);
myGroup.scatterGather("methodA5",scattarg1,scattarg2,
gatherResult,myGroup.getSize());
for (int i=0;i<myGroup.getSize();i=i+1)
 printf("result from scattergather(2 params) (should be [%d]) for object [%d]
: [%d]\n",scattarg1[i]+scattarg2[i],i,gatherResult[i]);
/*scatterreduce*/
printf("----------SCATTERREDUCES----------\n");
int scatterReduceResult[1];
myGroup.scatterReduce("methodA4",scattarg1,scatterReduceResult,myGroup.getSize(),0)
;
printf("result from scatterreduce(1 param) (shoudld be [%d]) for Group :
[%d]\n",2*2,scatterReduceResult[0]);
myGroup.scatterReduce("methodA5",scattarg1,scattarg2,
scatterReduceResult,myGroup.getSize(),0);
 printf("result from scatterreduce(2 param) (shoudld be [%d]) for Group :
[%d]\n",13+3,scatterReduceResult[0]);

//printf("----------BROADCAST with objects as parameters----------\n");
//A argA;
//myGroup.broadcast("methodA7",argA);
printf("----------BROADCASTGATHER with objects as return----------\n");
A aReturn[myGroup.getSize()];
myGroup.broadcastGather("methodA8",aReturn);
//myGroup.broadcastGather("methodA9",argA,aReturn);

printf("------ emptying group---------\n");
 myGroup.emptyGroup();
 printf("is Group now empty ? [%s]\nsize of the group (should be
[0])=%d\n",myGroup.isEmpty()==0?"false":"true",myGroup.getSize());

 } catch (RankException error) {
 printf("%s\n",error.getMessage());
 }
 return 0;

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

85 Report Barras Frédéric

}

//Add objects in parameter
//Add array of objects in parameter
//Add array of primitive types in parameter

//empty group
/*
int testWithInteger()
{
 try {
 Integer o1(60,40);
 Integer o2(paroc_system::GetHost());
 Integer o3(100,20);

 // Create an empty group
 POPGroup<Integer> myGroup("Integer");

 // Adding 3 Integer objects to the group
 myGroup.add(o1);
 myGroup.add(o2);
 myGroup.add(o3);

 // Broadcast
 char* method="Set";
 myGroup.broadcast(method,3);

 int res[myGroup.getSize()];
 // Gather
 method="Get";
 myGroup.broadcastGather(method,res);

 int val[myGroup.getSize()];
 for(int i=0;i<myGroup.getSize();i++){
 val[i]=i;
 }
 // Scatter
 method="Set";
 myGroup.scatter(method,val);

 // Different Reduce operations
 method="Get";
 int resultReduce[1];
 myGroup.broadcastReduce(method,resultReduce,POPGroup<Integer>::OPERATION_MAX);
 myGroup.broadcastReduce(method,resultReduce,POPGroup<Integer>::OPERATION_MIN);
 myGroup.broadcastReduce(method,resultReduce,POPGroup<Integer>::OPERATION_OR);

 // Preparing array of remote objects
 Integer tmp[4];
 tmp[0].Set(5);
 tmp[1].Set(6);
 tmp[2].Set(7);
 tmp[3].Set(8);

 // Broadcast operation with remote object in parameter
 method="Add";

 //myGroup.broadcast(method,&o1); //TO VERIFY, MAYBE IMPOSSIBLE

 // Scatter operation with array of remote objects in parameter
 method="Add";
 //myGroup.scatter(method,tmp);

 // Remove single members from group

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

86 Report Barras Frédéric

 myGroup.removeAt(2);
 myGroup.removeAt(1);
 myGroup.removeAt(0);

 // Adding multiple Integer objects to the group
 myGroup.add(tmp, 4);

 /*res[myGroup.getSize()];
 int x[5000];
 int y[5000];
 int *a[2] = {x,y};
 for(int i=0;i<5000;i++) {
 x[i]=i;
 y[i]=5;
 }
 // Broadcast operation with array as parameter
 method="Sum";
 myGroup.broadcast(method,x);

 // Scatter operation with array as parameter (only 2 objects will be invoked)
 myGroup.scatter(method,a,res);*/
/*
 // Removing multiple objects from the group;
 myGroup.remove(tmp,4);

 myGroup.add(o1);
 myGroup.add(o2);
 myGroup.add(o3);

 // Group merging
 POPGroup<Integer> myGroup2;
 myGroup2.add(tmp,4);
 myGroup.merge(myGroup2);

 // Exception handling
 try {
 myGroup.removeAt(8);
 } catch (RankException error) {
 cout<<error.getMessage();
 }
 try {
 myGroup.getMember(-1);
 } catch (RankException error) {
 cout<<error.getMessage();
 }

 // Emptying group;
 if(!myGroup.isEmpty())
 myGroup.emptyGroup();

 o1.Wait(5);
 o2.Wait(5);
 o3.Wait(5);
 }
 catch (paroc_exception *e)
 {
 cout<<"Object creation failure"<<"\n";
 return -1;
 }
 return 0;
}
*/

8.10.11. POPGroup.cpp

#include "POPGroup.hpp"

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

87 Report Barras Frédéric

#include "A_reflection.hpp"
#include "Integer_reflection.hpp"
#include <limits.h>

using namespace reflcpp;
using namespace std;
/*************POPGroup()************************/
template <class T>

POPGroup<T>::POPGroup(){

 size=0;
 char* className="A";
 insideClass=className;
 //printf("\nConstructor with [%s] as Class \n",className);
 ClassType ct = ClassType::getClass(className);
 std::string classNameRet = ct.name();
 //printf("Name of the class (should be [%s]):
[%s]\n",className,classNameRet.c_str());
}

/*************POPGroup(char*)*******************/
template <class T>

POPGroup<T>::POPGroup(char* className){

 size=0;
 //printf("\nConstructor with [%s] as Class \n",className);
 ClassType ct = ClassType::getClass(className);
 insideClass=className;
 std::string classNameRet = ct.name();
 //printf("Name of the class (should be [%s]):
[%s]\n",className,classNameRet.c_str());
}

/*************broadcast(char*)******************/
template <class T>

void POPGroup<T>::broadcast(char* method){

 //printf("broadcastmethod. try to call [%s] on [%s]\n",method,insideClass);
 ClassType ct = ClassType::getClass(insideClass); //BUG, insideClass vaut de la
MERDE-- corrigÃ©
 //printf("Broadcast without parameter from [%s] on
[%s]\n",method,(ct.name()).c_str());
 MemberFunction mf =ct.getMemberFunction(method);
 int i;
 for (i=0;i<members.size();i=i+1)
 {
 //printf("Invoke [%s] on Element number [%d] \n",method,i);
 mf.invoke<void>(members[i]);
 }
}

/*************broadcast(char*,Arg1)*************/
template <class T>

template<class Arg1>

void POPGroup<T>::broadcast(char* method,Arg1 arg1){

 //printf("try to call [%s] on [%s] with 1 param\n",method,insideClass);
 ClassType ct = ClassType::getClass(insideClass);
 MemberFunction mf =ct.getMemberFunction(method);
 int i;
 for (i=0;i<members.size();i=i+1)
 {
 //printf("Invoke [%s] on Element number [%d] with 1 param\n",method,i);
 mf.invoke<void>(members[i],arg1);
 }
}

/*************broadcast(char*,Arg1,Arg2)********/

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

88 Report Barras Frédéric

template <class T>

template<class Arg1,class Arg2>

void POPGroup<T>::broadcast(char* method,Arg1 arg1, Arg2 arg2){

 //printf("try to call [%s] on [%s] with 2 param\n",method,insideClass);
 ClassType ct = ClassType::getClass(insideClass);
 MemberFunction mf =ct.getMemberFunction(method);
 int i;
 for (i=0;i<members.size();i=i+1)
 {
 //printf("Invoke [%s] on Element number [%d] with 2 param\n",method,i);
 mf.invoke<void>(members[i],arg1,arg2);
 }
}

/*************scatter(char*,Arg1)***************/
template <class T>

template<class Arg1>

void POPGroup<T>::scatter(char* method,Arg1* arg1,int arraySize){

 //printf("try to call [%s] on [%s] with 1 param\n",method,insideClass);
 ClassType ct = ClassType::getClass(insideClass);
 MemberFunction mf =ct.getMemberFunction(method);
 int i,j;
 for (i=0;i<arraySize;i=i+1)
 {
 j=i%members.size();
 //printf("Invoke [%s] on Element number [%d] with 1 param\n",method,j);
 mf.invoke<void>(members[j],arg1[i]);
 }
}

/*************scatter(char*,Arg1,Arg2)**********/
template <class T>

template<class Arg1,class Arg2>

void POPGroup<T>::scatter(char* method,Arg1* arg1, Arg2* arg2,int arraySize){

 //printf("try to call [%s] on [%s] with 2 param\n",method,insideClass);
 ClassType ct = ClassType::getClass(insideClass);
 MemberFunction mf =ct.getMemberFunction(method);
 int i,j;
 for (i=0;i<arraySize;i=i+1)
 {
 j=i%members.size();
 // printf("Invoke [%s] on Element number [%d] with 2 param\n",method,j);
 mf.invoke<void>(members[j],arg1[i],arg2[i]);
 }
}

/*************broadcastGather(char*,Ret*)*******/
template<class T>

template<class Ret>

void POPGroup<T>::broadcastGather(char* method,Ret *ret){

 ClassType ct = ClassType::getClass(insideClass);
 MemberFunction mf =ct.getMemberFunction(method);
 int i;
 for (i=0;i<members.size();i=i+1)
 {
 //printf("Invoke [%s] on Element number [%d] \n",method,i);
 ret[i]=mf.invoke<Ret>(members[i]);
 }
}
/*************broadcastGather(char*,Arg1,Ret*)********/
template<class T>

template<class Ret,class Arg1>

void POPGroup<T>::broadcastGather(char* method, Arg1 arg1, Ret* ret){

 ClassType ct = ClassType::getClass(insideClass);
 MemberFunction mf =ct.getMemberFunction(method);

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

89 Report Barras Frédéric

 int i;
 for (i=0;i<members.size();i=i+1)
 {
 //printf("Invoke [%s] on Element number [%d] \n",method,i);
 ret[i]=mf.invoke<Ret>(members[i],arg1);
 }
}
/*************broadcastGather(char*,Arg1,Arg2,Ret*)********/
template<class T>

template<class Ret,class Arg1,class Arg2>

void POPGroup<T>::broadcastGather(char* method, Arg1 arg1, Arg2 arg2, Ret* ret){

 ClassType ct = ClassType::getClass(insideClass);
 MemberFunction mf =ct.getMemberFunction(method);
 int i;
 for (i=0;i<members.size();i=i+1)
 {
 //printf("Invoke [%s] on Element number [%d] \n",method,i);
 ret[i]=mf.invoke<Ret>(members[i],arg1,arg2);
 }
}
/*************broadcastReduce(char*,Ret*,int)********/
template<class T>

template<class Ret>

void POPGroup<T>::broadcastReduce(char* method,Ret *retf,int type){

 ClassType ct = ClassType::getClass(insideClass);
 MemberFunction mf =ct.getMemberFunction(method);
 Ret ret[members.size()];
 int i;
 for (i=0;i<members.size();i=i+1)
 {
 //printf("Invoke [%s] on Element number [%d] \n",method,i);
 ret[i]=mf.invoke<Ret>(members[i]);
 }
 switch(type) {
 case 0:
 retf[0]= getMax(ret, size);
 break;
 case 1:
 retf[0]= getMin(ret, size);
 break;
 case 2:
 retf[0]= getOR(ret, size);
 break;
 }
}

/*************broadcastReduce(char*,Arg1,Ret*,int)********/
template<class T>

template<class Ret,class Arg1>

void POPGroup<T>::broadcastReduce(char* method, Arg1 arg1, Ret* retf, int type){

 ClassType ct = ClassType::getClass(insideClass);
 MemberFunction mf =ct.getMemberFunction(method);
 Ret ret[members.size()];
 int i;
 for (i=0;i<members.size();i=i+1)
 {
 //printf("Invoke [%s] on Element number [%d] \n",method,i);
 ret[i]=mf.invoke<Ret>(members[i],arg1);
 }
 switch(type) {
 case 0:
 retf[0]= getMax(ret, size);
 break;
 case 1:
 retf[0]= getMin(ret, size);

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

90 Report Barras Frédéric

 break;
 case 2:
 retf[0]= getOR(ret, size);
 break;
 }
}
/*************broadcastReduce(char*,Arg1,Arg2,Ret*,int)********/
template<class T>

template<class Ret,class Arg1,class Arg2>

void POPGroup<T>::broadcastReduce(char* method, Arg1 arg1, Arg2 arg2, Ret* retf,

int type){

 ClassType ct = ClassType::getClass(insideClass);
 MemberFunction mf =ct.getMemberFunction(method);
 Ret ret[members.size()];
 int i;
 for (i=0;i<members.size();i=i+1)
 {
 //printf("Invoke [%s] on Element number [%d] \n",method,i);
 ret[i]=mf.invoke<Ret>(members[i],arg1,arg2);
 }
 switch(type) {
 case 0:
 retf[0]= getMax(ret, size);
 break;
 case 1:
 retf[0]= getMin(ret, size);
 break;
 case 2:
 retf[0]= getOR(ret, size);
 break;
 }
}
/*************scatterGather(char*,Arg1*,Ret*,int)********/
template<class T>

template<class Ret,class Arg1>

void POPGroup<T>::scatterGather(char* method, Arg1* arg1, Ret* ret, int arraySize){

//printf("try to call [%s] on [%s] with 1 param\n",method,insideClass);
 ClassType ct = ClassType::getClass(insideClass);
 MemberFunction mf =ct.getMemberFunction(method);
 int i,j;
 for (i=0;i<arraySize;i=i+1)
 {
 j=i%members.size();
 // printf("Invoke [%s] on Element number [%d] with 1 param\n",method,j);
 ret[i]=mf.invoke<Ret>(members[j],arg1[i]);
 }
}
/*************scatterGather(char*,Arg1*,Arg2*,Ret*,int)********/
template<class T>

template<class Ret,class Arg1,class Arg2>

void POPGroup<T>::scatterGather(char* method, Arg1* arg1, Arg2* arg2, Ret* ret, int

arraySize){

 ClassType ct = ClassType::getClass(insideClass);
 MemberFunction mf =ct.getMemberFunction(method);
 int i,j;
 for (i=0;i<arraySize;i=i+1)
 {
 j=i%members.size();
 // printf("Invoke [%s] on Element number [%d] with 1 param\n",method,j);
 ret[i]=mf.invoke<Ret>(members[j],arg1[i],arg2[i]);
 }
}
/*************scatterReduce(char*,Arg1*,Ret*,int,int)********/
template<class T>

template<class Ret,class Arg1>

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

91 Report Barras Frédéric

void POPGroup<T>::scatterReduce(char* method, Arg1* arg1,Ret* retf,int

arraySize,int type){

ClassType ct = ClassType::getClass(insideClass);
 MemberFunction mf =ct.getMemberFunction(method);
 Ret ret[members.size()];
 int i,j;
 for (i=0;i<arraySize;i=i+1)
 {
 j=i%members.size();
 //printf("Invoke [%s] on Element number [%d] with 1 param\n",method,j);
 ret[i]=mf.invoke<Ret>(members[j],arg1[i]);
 }
 switch(type) {
 case 0:
 retf[0]= getMax(ret, arraySize);
 break;
 case 1:
 retf[0]= getMin(ret, arraySize);
 break;
 case 2:
 retf[0]= getOR(ret, arraySize);
 break;
 }
}
/*************scatterReduce(char*,Arg1*,Arg2*,Ret*,int,int)********/
template<class T>

template<class Ret,class Arg1,class Arg2>

void POPGroup<T>::scatterReduce(char* method, Arg1* arg1, Arg2* arg2, Ret* retf,

int arraySize, int type){

ClassType ct = ClassType::getClass(insideClass);
 MemberFunction mf =ct.getMemberFunction(method);
 Ret ret[members.size()];
 int i,j;
 for (i=0;i<arraySize;i=i+1)
 {
 j=i%members.size();
 //printf("Invoke [%s] on Element number [%d] with 1 param\n",method,j);
 ret[i]=mf.invoke<Ret>(members[j],arg1[i],arg2[i]);
 }
 switch(type) {
 case 0:
 retf[0]= getMax(ret, arraySize);
 break;
 case 1:
 retf[0]= getMin(ret, arraySize);
 break;
 case 2:
 retf[0]= getOR(ret, arraySize);
 break;
 }
}

/*************add(T&)***************************/
template <class T>

void POPGroup<T>::add(T &o) {

 members.push_back(&o); //retirÃ© le & devant o-- BARRAS
 size++;
}

/*************add(T*,int)***********************/
template <class T>

void POPGroup<T>::add(T *o, int nb) {

 for(int i=0;i<nb;i++)
 {

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

92 Report Barras Frédéric

 members.push_back(&(o[i]));//retirÃ© le & devant o-- BARRAS
 size++;
 }
}

/*************removeAt(int)*********************/
template <class T>

void POPGroup<T>::removeAt(int rank) {

 if(rank<0 || rank>(size-1))
 throw RankException(rank);
 it=members.begin()+rank;
 members.erase(it);
 size--;
}

/*************getRank(T&)***********************/
template <class T>

int POPGroup<T>::getRank(T &o) {

 for(int i=0;i<size;i++)
 {
 if(members.at(i)==&o) //BARRAS added the first &, new : retired both &
 {
 return i;
 break;
 }
 }
 return -1;
}

/*************isEmpty()*************************/
template <class T>

bool POPGroup<T>::isEmpty() {

 return size==0;
}

/*************emptyGroup()**********************/
template <class T>

void POPGroup<T>::emptyGroup() {

 members.clear();
 size=0;
}

/*************remove(T*,int)********************/
template <class T>

void POPGroup<T>::remove(T *o, int nb) {

 int rank;
 for(int i=0;i<nb;i++)
 {
 rank = getRank(o[i]); //ajoutÃ© * devant o
 removeAt(rank);
 }
}

/*************getSize()*************************/
template <class T>

int POPGroup<T>::getSize() const {

 return size;
}

/*************getMember(int)********************/
template <class T>

T& POPGroup<T>::getMember(int rank) {

 if(rank<0 || rank>(size-1))
 throw RankException(rank);
 else

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

93 Report Barras Frédéric

 return *(members.at(rank)); //retirÃ© le * devant members BARRAS
}

/*************merge(POPGroup<T>)****************/
template <class T>

void POPGroup<T>::merge(POPGroup<T> &g) {

 for(int i=0;i<g.getSize();i++)
 add(g.getMember(i));
}

// reduce operations for every needed return type
template <class T>

template <class Arg>

 Arg POPGroup<T>::getMax(Arg res[], int size) {

 Arg result = res[0];
 for(int i=1;i<size;i++)
 result = res[i]>result?res[i]:result;
 return result;
 }
template <class T>

template <class Arg>

 Arg POPGroup<T>::getMin(Arg res[], int size) {

 Arg result = res[0];
 for(int i=1;i<size;i++)
 result = res[i]<result?res[i]:result;
 return result;
 }
template <class T>

template <class Arg>

 Arg POPGroup<T>::getOR(Arg res[], int size) {

 Arg result = res[0];
 for(int i=1;i<size;i++)
 result |= res[i];
 return result;
 }

8.10.12. POPGroup.hpp

#ifndef _POPGROUP_H
#define _POPGROUP_H
#include <vector>
#include "src/ClassType.hpp"
//Includes made by the main.cpp in examples.
//#include "src/ClassType_tmpl.hpp"
#include "src/BoundClassType_tmpl.hpp"
#include "src/Exceptions.hpp"
#include "RankException.hpp"

using namespace reflcpp;

template <class T>
class POPGroup
{
public:
 POPGroup<T>();
 POPGroup<T>(char* className);

 void broadcast(char* method);
 template<class Arg1>
 void broadcast(char* method,Arg1 arg1);
 template<class Arg1,class Arg2>
 void broadcast(char* method,Arg1 arg1, Arg2 arg2);
 // void reduce(char* method[], int &result, int reduceType);
 template<class Arg1>
 void scatter(char* method, Arg1* arg1,int arraySize);
 template<class Arg1,class Arg2>

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

94 Report Barras Frédéric

 void scatter(char* method, Arg1* arg1,Arg2*arg2,int arraySize);
 //no argument, an array in return
 template<class Ret>
 void broadcastGather(char* method,Ret *ret);
 //one argument, an array in return
 template<class Ret,class Arg1>
 void broadcastGather(char* method,Arg1 arg1,Ret *ret);
 //tow arguments, an array in return
 template<class Ret,class Arg1,class Arg2>
 void broadcastGather(char* method,Arg1 arg1,Arg2 arg2,Ret *ret);
 //no argument, a value in return
 template<class Ret>
 void broadcastReduce(char* method,Ret *ret, int type);
 //one argument, a value in return
 template<class Ret,class Arg1>
 void broadcastReduce(char* method,Arg1 arg1,Ret *ret,int type) ;
 //two arguments, a value in return
 template<class Ret,class Arg1,class Arg2>
 void broadcastReduce(char* method,Arg1 arg1,Arg2 arg2,Ret *ret, int type);
 //one argument, an array in return
 template<class Ret,class Arg1>
 void scatterGather(char* method,Arg1 *arg1, Ret *ret,int arraySize);
 //two arguments, an array in return
 template<class Ret,class Arg1,class Arg2>
 void scatterGather(char* method,Arg1 *arg1, Arg2 *arg2, Ret *ret,int
arraySize);
 //one argument, a value in return
 template<class Ret,class Arg1>
 void scatterReduce(char* method,Arg1 *arg1, Ret *ret, int arraySize, int
type);
 //two arguments, a value in return
 template<class Ret,class Arg1,class Arg2>
 void scatterReduce(char* method,Arg1 *arg1, Arg2 *arg2, Ret *ret,int
arraySize, int type);

 void add(T &obj);
 void add(T *o, int nb);
 void removeAt(int rank);
 void remove(T *o, int nb);
 int getRank(T &o);
 int getSize() const;
 bool isEmpty();
 void emptyGroup();
 T &getMember(int rank);
 void merge(POPGroup<T> &g);

 const static int OPERATION_MAX=0;
 const static int OPERATION_MIN=1;
 const static int OPERATION_OR=2;
private:

 template<class Ret> Ret getMax(Ret res[], int size);
template<class Ret> Ret getMin(Ret res[], int size);
template<class Ret> Ret getOR(Ret res[], int size);
 char* insideClass;
 std::vector<T*> members;
 typename std::vector<T*>::iterator it;
 int size;
};

#endif

8.10.13. RankException.hpp

class RankException {

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

95 Report Barras Frédéric

 int rank;
 char message[40];

 public:
 RankException(int r) {
 rank=r;
 sprintf(message,"Exception: Rank %d out of range\n",rank);
 }

 char *getMessage() {
 return message;
 }
};

8.10.14. Result of a POPGroup containing A objects

barraf@barraf-laptop:~/POPGroup$ parocc -o mainAB.out mainAB.cpp A_reflection.cpp
POPGroup.cpp A.cpp ./src/*.o
barraf@barraf-laptop:~/POPGroup$ parocrun objmap ./mainAB.o
mainAB.o mainAB.out
barraf@barraf-laptop:~/POPGroup$ parocrun objmap ./mainAB.out

 !!! Test with POPGroup !!!

-----------Creation, add and remove---------
Object A constructed
Object A constructed
Object A constructed
Size of the group (should be [4]) : [4]
Size of the group (should be [3]) : [3]
Object A constructed
Object A constructed
Object A constructed
Object A constructed
Size of the group (should be [7]) : [7]
Size of the group (should be [3]) : [3]
Size of the group (should be [4]) : [4]
----------BROADCASTS----------
Object A constructed

Call method1 on Object A

Call method1 on Object A

Call method1 on Object A

Call method1 on Object A
Call method2 on Object A with value=[12]
Call method2 on Object A with value=[12]
Call method2 on Object A with value=[12]
Call method2 on Object A with value=[12]
Call method6 on Object A with value1=[22] and value2=[33]
Call method6 on Object A with value1=[22] and value2=[33]
Call method6 on Object A with value1=[22] and value2=[33]
----------SCATTERS----------
Call method6 on Object A with value1=[22] and value2=[33]
Call method2 on Object A with value=[0]
Call method2 on Object A with value=[1]
Call method2 on Object A with value=[2]
Call method2 on Object A with value=[3]
Call method6 on Object A with value1=[0] and value2=[10]
Call method6 on Object A with value1=[1] and value2=[11]
Call method6 on Object A with value1=[2] and value2=[12]

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

96 Report Barras Frédéric

----------BROADCASTGATHERS----------
Call method6 on Object A with value1=[3] and value2=[13]
Call method3 on Object A
Call method3 on Object A
Call method3 on Object A
result from broadcastgather(0 param) (should be [14]) for object [0] : [14]
result from broadcastgather(0 param) (should be [14]) for object [1] : [14]
result from broadcastgather(0 param) (should be [14]) for object [2] : [14]
result from broadcastgather(0 param) (should be [14]) for object [3] : [14]
Call method3 on Object A
Call method4 on Object A with value=[14]
Call method4 on Object A with value=[14]
Call method4 on Object A with value=[14]
result from broadcastgather(1 param) (should be [28]) for object [0] : [28]
result from broadcastgather(1 param) (should be [28]) for object [1] : [28]
result from broadcastgather(1 param) (should be [28]) for object [2] : [28]
result from broadcastgather(1 param) (should be [28]) for object [3] : [28]
Call method4 on Object A with value=[14]
Call method5 on Object A with value1=[23] and value2=[43]
Call method5 on Object A with value1=[23] and value2=[43]
Call method5 on Object A with value1=[23] and value2=[43]
result from broadcastgather(2 params) (should be [66]) for object [0] : [66]
result from broadcastgather(2 params) (should be [66]) for object [1] : [66]
result from broadcastgather(2 params) (should be [66]) for object [2] : [66]
result from broadcastgather(2 params) (should be [66]) for object [3] : [66]
----------BROADCASTREDUCES----------
Call method5 on Object A with value1=[23] and value2=[43]
Call method3 on Object A
Call method3 on Object A
Call method3 on Object A
result from broadcastreduce(0 param) (shoudld be [14]) for Group : [14]
Call method3 on Object A
Call method4 on Object A with value=[14]
Call method4 on Object A with value=[14]
Call method4 on Object A with value=[14]
result from broadcastreduce(1 param) (shoudld be [28]) for Group : [28]
Call method4 on Object A with value=[14]
Call method5 on Object A with value1=[23] and value2=[43]
Call method5 on Object A with value1=[23] and value2=[43]
Call method5 on Object A with value1=[23] and value2=[43]
result from broadcastreduce(2 param) (shoudld be [66]) for Group : [66]
----------SCATTERGATHERS----------
Call method5 on Object A with value1=[23] and value2=[43]
Call method4 on Object A with value=[0]
Call method4 on Object A with value=[1]
Call method4 on Object A with value=[2]
result from scattergather(1 param) (should be [0]) for object [0] : [0]
result from scattergather(1 param) (should be [2]) for object [1] : [2]
result from scattergather(1 param) (should be [4]) for object [2] : [4]
result from scattergather(1 param) (should be [6]) for object [3] : [6]
Call method4 on Object A with value=[3]
Call method5 on Object A with value1=[0] and value2=[10]
Call method5 on Object A with value1=[1] and value2=[11]
Call method5 on Object A with value1=[2] and value2=[12]
result from scattergather(2 params) (should be [10]) for object [0] : [10]
result from scattergather(2 params) (should be [12]) for object [1] : [12]
result from scattergather(2 params) (should be [14]) for object [2] : [14]
result from scattergather(2 params) (should be [16]) for object [3] : [16]
----------SCATTERREDUCES----------
Call method5 on Object A with value1=[3] and value2=[13]
Call method4 on Object A with value=[0]
Call method4 on Object A with value=[1]
Call method4 on Object A with value=[2]
result from scatterreduce(1 param) (shoudld be [4]) for Group : [6]
Call method4 on Object A with value=[3]

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

97 Report Barras Frédéric

Call method5 on Object A with value1=[0] and value2=[10]
Call method5 on Object A with value1=[1] and value2=[11]
Call method5 on Object A with value1=[2] and value2=[12]
result from scatterreduce(2 param) (shoudld be [16]) for Group : [16]
----------BROADCASTGATHER with objects as return----------
Call method5 on Object A with value1=[3] and value2=[13]
Object A constructed
Object A constructed
Object A constructed
Object A constructed
Object A constructed
Call method8 on Object A Object A constructed
Object A constructed
Call method8 on Object A Object A constructed
Object A constructed
Call method8 on Object A Object A constructed
Object A constructed
Call method8 on Object A ------ emptying group---------
is Group now empty ? [true]
size of the group (should be [0])=0
Object A constructed
[objectmonitor.cc:69]Check parallel objects....0 object alive
barraf@barraf-laptop:~/POPGroup$ [codemgr.cc:13]Now destroy CodeMgr

