INSTITUTE FOR RESEARCH IN APPLICABLE COMPUTING

Grid-Enabled Real-Time 3D Ray Tracing for Wireless Network Simulation and Planning

Zhihua Lai, Nik Bessis, Jie Zhang, Gordon Clapworthy

zhihua.lai@beds.ac.uk

CONTEXT

- 3D Ray Tracing Algorithms are used in wireless propagation deterministic models. Much literature has investigated this area and yet the time spent on simulating rays is still high.
- grid, as an emerging technique, can aggregate resources from all over the world and benefit the wireless network propagation simulator.

Propagation Scenario in a Typical Urban Environment

PROBLEMS

- an Environment Database which contains too many polygons (e.g. thousands) slows down the simulating process.
- too many unnecessary rays slow down the simulating process.
- objects far away from the transmitter will usually be less covered by rays.
- grid benefits the storage of huge propagation environments, which can be fast indexed and accessed, while parallel computation schemes are not well defined.

OBJECTIVES

- to Improve the speed and accuracy of the 3D Ray Tracing Algorithm used in wireless propagation model
- to Apply the algorithm in Grid Environment
- to Develop a grid-enabled wireless propagation simulator

Grid-Enabled Propagation Simulator Sequence Diagram

SOME THOUGHTS

- an accumulated ray which has nearly the same energy as in Free Space should be marked and further rays are neglected.
- rays that have lost a lot of energy (e.g. 1/6) should be neglected. This usually happens when a ray has reached several levels of reflections or diffractions.
- intersection between lines (rays) and polygons (objects in the scene) lies at the core of the simulation, which is very time-consuming, and could be improved.
- parallel schemes can incur lower communication overheads.
- data structures that represent polygons, as well as the environment database should be concise, fast indexed, preventing unnecessary calculations.

References

 WinProp Propagation Model and Background Information, AWE Communications GmbH, Germany, 2002.
Zhihua Lai, Nik Bessis, Jie Zhang, and Gordon Clapworthy, "Some Thoughts on Adaptive Grid-Enabled Optimisation Algorithms for Wireless Network Simulation and Planning", e-Science, AHM 2007, to be published.
Nik Bessis, Tim French, and Zhihua Lai, "Using Grid Technologies to Support Intelligence by Providing a Higher Level of Accuracy in Financial Decision Making", e-Society, IADIS 2007, to be published.

