
 

SSE2  Optimization – OpenGL Data 
Stream Case Study 
 
By 
 
Arun Kumar 
Intel Corporation 
 

®   



® SSE2 optimization strategies 

 

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or 
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of 
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to 
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or 
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life 
saving, or life sustaining applications. 

Intel may make changes to specifications and product descriptions at any time, without notice. 

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined”. Intel 
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from 
future changes to them. 

The hardware manufacturer remains solely responsible for the design, sale and functionality of its product, including any liability 
arising from product infringement or product warranty. 

The Pentium® II, Pentium® II Xeon™, Pentium® III and Pentium® III Xeon™ processors may contain design defects or errors 
known as errata which may cause the product to deviate from published specifications. Current characterized errata are 
available on request. 

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate 
performance of Intel products as measured by those tests. Any difference in system hardware or software design or 
configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of 
systems or components they are considering purchasing. For more information on performance tests and on the performance of 
Intel products, reference:  

www.intel.com/procs/perf/limits.htm or call (U.S.) 1-800-628-8686 or 1-916-356-3104. 

Intel, Pentium, and Xeon are trademarks or registered trademarks of Intel Corporation. 

*Third-party brands and names are the property of their respective owners. 

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. 

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be 
obtained from: 

Intel Corporation 
P.O. Box 7641 
Mt. Prospect, IL 60056-7641 

or call 1-800-879-4683 

 
Copyright © Intel Corporation  (1998) 

ii   



 
TABLE OF CONTENTS 

 

ABSTRACT....................................................................................................................................1 
OPENGL DATA STREAM ..............................................................................................................1 

Bounding box computation......................................................................................................1 
USING SSE2, THE SIMPLEST APPROACH .......................................................................................2 

In-efficiency in this approach..................................................................................................4 
USING AN IMPROVED SSE2 APPROACH ........................................................................................5 
RELATIVE PERFORMANCE, 1 TRIANGLE VS 4 TRIANGLES AT A TIME .............................................6 
OPENGL DATA IN A TRI-STRIP FORMAT........................................................................................7 
RELATIVE PERFORMANCE, TRI-STRIPS VS DISJOINT TRIANGLES ....................................................8 

 
FIGURE 1 BOUNDING BOX FOR A TRIANGLE – COORDINATE GEOMETRY ........................................ 2 
FIGURE 2 OPENGL TRIANGLE STREAM AND SSE2 LOADS............................................................... 3 
FIGURE 3 MMX FOR ASSEMBLING BOUNDING BOXES..................................................................... 4 
FIGURE 4 SSE2 FOUR TRIANGLES AT A TIME .................................................................................. 5 
FIGURE 5 BOUNDING BOX OUTPUT STREAM.................................................................................... 6 
FIGURE 6 - TRI-STRIP ARRANGEMENT............................................................................................. 7 
FIGURE 7 TRI-STRIP OPENGL DATA STREAM .................................................................................. 8 
FIGURE 8 THREE WAY MIN AND MAX FOR 4 TRIANGLES AT A TIME (SHOWING X-COORDINATE) ...... 8 
 

 

  iii 





SSE2 optimization strategies ® 

Abstract 
At its core, Streaming Single Instruction Multiple Data Extensions (SSE2) aims to encourage 
exploitation of parallelism. The SSE2 benefit is allowing an application to perform the same 
manipulations on more than one data item at a time. To take advantage of SSE2 the software 
developer should be on the lookout for situations where computations can be done in parallel on 
multiple data items. This paper explores the use of SSE2 for a specific case in which bounding 
boxes are computed for each triangle in an input graphics data stream.  First, the case of a stream 
of disjoint triangles is considered and two different ways of approaching an SSE2 implementation 
are demonstrated, highlighting the benefit of one over the other. Next, the case of triangle strips is 
examined and an SSE2 implementation is developed. Performance of the approaches developed is 
compared. 

OpenGL Data Stream 
The data being considered in this paper is an OpenGL stream of triangle data. Triangles are used 
in a variety of ways by graphics applications.  For example, they could be part of a surface 
tessellation (a specific case of a more general polygon representation of a surface), or they could 
be the representation of a volume (each triangle bound by a unit volume). Depending on an 
application’s requirement, vertices of the triangle typically may have additional data associated 
with them (i.e. color coordinates, texture coordinates, lighting coordinates).  This paper examines 
the task of computing the smallest box that bounds a given triangle. The size of the smallest 
bounding box along with coordinate positions of the box allows the study of a number of 
interesting properties of 3D models, for example, intersecting surfaces, distance of closest 
approach, intersection of a ray with a surface etc. This paper demonstrates two ways of 
implementing SSE2 optimizations to this problem and shows that although both are good 
optimization approaches, one out-performs the other.  

Bounding box computation 
Consider a triangle (A,B,C)=( (ax,ay,az),(bx,by,bz),(cx,cy,cz)) as shown in Figure 1. To find out 
the smallest possible box that contains the triangle, we need to find the principle lengths of the 
box. Thus, we need to perform the following calculations: 

Box_size_x = Abs(Xmax-Xmin) 

Box_size_y = Abs(Ymax-Ymin) 

Box_size_z = Abs(Zmax-Zmin) 

Where, 

Xmax = Max(ax,bx,cx)    and   Xmin = Min(ax,bx,cx) 

Ymax = Max(ay,by,cy)    and  Ymin = Min(ay,by,cy)     

Zmax = Max(az,bz,cz)     and  Zmin = Min(az,bz,cz).  

Abs() is the usual absolute value function, while Min() and Max() are functions that compute the 
arithmetic maximum and minimum of the set of values passed to them.  Note that the operations 
performed in the x-coordinate direction are independent of those in the y-coordinate and z-
coordinate directions. Thus parallelism could be used to speed up the entire bounding box 
computation. 

 

  1 



® SSE2 optimization strategies 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

     Figure 1 Bounding Box for a Triangle – 

 

Using SSE2, the simplest approach 
This section describes the first and possibly the simplest appro
optimizations. The input data stream has the following form: {
Triangle2,Triangle3…}~{(ax1,ay1,az1,xx,xx,xx),(bx1,by1,bz
ax2,ay2,az2,xx,xx,xx),(bx2,by2,bz2,xx,xx,xx),(cx2,cy2,cz2,x
,by3,bz3,xx,xx,xx), (cx3,cy3,cz3,xx,xx,xx)….}.  Note that all
data  (indicated by “xx”), which is unimportant for the purpos
defined as the distance in bytes between the start of one vertex
immediately succeeding it in the stream.  Assuming floats in t
Loading 3 vertices for a triangle with three SSE2 reads is depi
to read four floats worth of data with one SSE2 load instructio

 

 

ax1 ay
1 

az
1 

xx xx xx bx1 by
1 

bz1 xx xx 

 

 

X_min

nni

 

C 

B 

Box_size_

Box_size_y

A 
Box_size_z 

4 float SSE2 reads from memory 
 

2  
X_ma xX_mi
Y_m x aX_mi
iY_m X_mi
Z_m X_mi
xX_miZ_ma 
Coordinate geometry 

ach in implementing SSE2 
Triangle1, 
1,xx,xx,xx),(cx1,cy1,cz1,xx,
x,xx,xx),(ax3,ay3,az3,xx,xx,
 vertices have associated add
es of this calculation.  The st
 and the start of the vertex 

his case the stride would be 2
cted in Figure 2, since it is p
n. 

xx cx1 cy
1 

cz
1 

xx 

x

X

Y

Z

xx,xx),(
xx),(bx3
itional 
ride is 

4.  
ossible 

xx xx 

 



Figure 2 OpenGL triangle stream and SSE2 loads 

The SSE registers now contain: 

xmm0 = {ax1, ay1, az1, xx}  

xmm1 = {bx1, by1, bz1, xx}  

xmm2 = {cx1, cy1, cz1, xx} 

We can perform our planned operations to find the bounding box as follows: 

xmm3 = max(xmm0,xmm1) 

xmm4 = max(xmm3,xmm2) 

and, 

xmm5 = min(xmm0,xmm1) 

xmm6 = min(xmm5,xmm2) 

functionally, the end result is: 

xmm4 = Max(x,y,z) // max_vec 

xmm6 = Min(x,y,z) // min_vec 

The bounding box can now be finalized by rearranging data so that before it is written out to 
memory we have the data arranged in the following format as shown in Figure 3: (min_vec.x, 
min_vec.y, min_vec.z, max_vec.x, max_vec.y, max_vec.z).  

Typically, applications require the bounding box data in a normalized short integer (or perhaps 
byte) format.  Before the final coordinates are written out to memory, the floats must be converted 
to suitable integers and then appropriately clamped within a certain range (e.g. the range 
(min,max) where min and max are usually integer values with application dictated precision).  One 
way to obtain appropriate clamping values in SSE2 registers is to first declare aligned arrays with 
the clamp values as elements:  

int declspec(align(16)) clamp-min = {min,min,min,min}; 

int declspec(align(16)) clamp-max = {max,max,max,max}; 

Then load these arrays into XMM registers using movaps. Assume that clamp-min and clamp-
max arrays are loaded into xmm6 and xmm7. 

The process of clamping is simply carrying out the following operations: 

xmm8 = Max(xmm6,xmm4) 

 xmm8 = min(xmm8,xmm7)  // for the max_vector 

xmm9 = Max(xmm6,xmm5) 

xmm9 = min(xmm9,xmm7)  // for the min_vector 

Since there are only 8 XMM registers on the Pentium® 4 processor, the resources required in the 
pseudo-code above exceed the resources at our disposal.  This means that registers no longer 
needed will have to be reused. 

It is quite common for applications to store the bounding box output data in fewer bits of precision 

  3 



® SSE2 optimization strategies 

than the usual 32 bit integers (this of course depends on how the application intends to use the 
integer data). Based on a real world application, 10 bits of precision for each component is 
assumed in this paper partly because it makes the process of packing the data more instructive.  
With this assumption, the clamping max value is 1023 (1111111111, binary). While the 
conversion to integers and clamping can be performed in SSE2 registers it would be instructive to 
draw attention to the fact that the MMX™ registers can also be used and in fact can help reduce 
register contention among the SSE2 register set. Figure 3 details how the MMX registers can be 
loaded with the appropriate data two dwords at a time.  

 

 

 

 

  

minx miny minz xx 

    

 

 

   

 

 

  

 

Minx Mmaxx Miny Ma

Miny<<1
0 

Ma
0 

Minx Maxx 

shufps and punpckhdq 

mm1 mm0 

pslld 

 
por  

Minz Miny Minx 

 

                             Figure 3 MMX f

 

First the data corresponding to x,y,z coordinates  is sh
registers. The next operation shifts the data appropria
position while z coordinate data shifted by 20). Finall
is now ready to be written to memory. 

Inefficiency in this approach 
The approach just described will provide a significant

4  
mm2 mm0
maxx maxy ma

xy Min

xy<<1 Minz<
0 

Maxz Maxy 

or assembling Bounding 

uffled and packed into
tely (y coordinate data 
y the  3 MMX registers

 performance boost.  H
0 mm3 mm
xz xx 

z Maxz 

<2 Maxz<<2
0 

MMX 

Maxx 

boxes 

 separate MMX 
shifted left by 10 bit 
 are ORed. The data 

owever there is some 

 



inefficiency in this approach since the SSE2 mathematical operations are working on 3 out of 4 
slots in each XMM register.  One slot remains filled with unimportant data.  In fact, care has to be 
exercised about the kind of data in the unused slot since denormal data could incur SSE assists 
slowing down the calculations.  If the fourth unused slot can be utilized in each of the operations, 
it could boost the output of the computations we are performing.  Processing data containing four 
triangles at a time allows us to completely utilize the SSE2 registers. This approach is discussed in 
the next section. 

Using an improved SSE2 approach 
An improved SSE2 approach processes four triangles at a time. In this section, it is shown that this 
ensures the unused slot in the XMM registers is used. Compared to the approach of the previous 
section it gives a performance improvement. Figure 4 shows how this method works. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

ay, by, cy ax, bx, cx az, bz, cz 

9 xmms

  c1_z       c2_z     c3_z     c4_z 

 

  c1_y       c2_y     c3_y     c4_y 

 

 

  c1_x       c2_x     c3_x     c4_x 

 

 

  b1_z       b2_z     b3_z     b4_z 

 

  b1_y       b2_y     b3_y     b4_y 

 

 

  b1_x       b2_x     b3_x     b4_x 

 

 

  a1_z       a2_z     a3_z     a4_z 

 

  a1_y       a2_y     a3_y     a4_y 

 

 

  a1_x       a2_x     a3_x     a4_x 

 

(a4_x,a4_y,a4_z) (b4_x,b4_y,b4_z) (c4_x,c4_y,c4_z) 

(a3_x,a3_y,a3_z)(b3_x,b3_y,b3_z)(c3_x,c3_y,c3_z) 

(a2_x,a2_y,a2_z) (b2_x,b2_y,b2_z) (c2_x,c2_y,c2_z) 

(a1_x,a1_y,a1_z)(b1_x,b1_y,b1_z) (1_x,c1_y,c1_z) 

Zmin      Min(az, bz, cz)  

Zmax      Max(az, bz, cz)  
=

Ymin      Min(ay, by, cy)  

Ymax      Max(ay, by, cy)  
=

Xmin      Min(ax, bx, cx)  

Xmax      Max(ax, bx, cx)  
= 

              Figure 4 SSE2 Four triangles at a time 

Conceptually, and as shown in Figure 4, only nine XMM registers are needed to accommodate the 
data for 4 triangles rather than 12 XMM registers in the earlier approach. This gives an insight into 

  5 



® SSE2 optimization strategies 

why dealing with four triangles at a time would be beneficial: it allows use of the “register” estate 
at our disposal better (no slots wasted in the XMM registers). This changes the way the 
computation for the bounding boxes are performed. In Figure 4, ax can be thought of as a vector 
that has assembled the x-components of the first point (the “a” point) of each of the four triangles. 
Similarly bx is the vector assembling the x-components of the second point in each of the four 
triangles (the “b” point) and cx is the vector assembling the x components of the third point of 
each of the four triangles (the “c” point). Similar interpretations hold for vectors ay,by,cy,az,bz 
and cz). Xmin results from the component-wise minimum of the vectors ax, bx and cx and thus 
each component of Xmin is the minimum x-component of each of the four triangles. Similar 
interpretation holds for all the other vectors, both min and max. The result is six XMM registers 
that have the complete bounding box data of 4 triangles.  

The number of XMM registers needed by the procedure described above exceeds the number of 
those available on the current Pentium 4 processor. To keep the XMM register count within the 
number of physically available registers, computations are done in individual coordinate 
directions, one at a time (i.e., x-coordinate computations are done first followed by computations 
with the y and z coordinates).  Since the operations in the three coordinate directions are 
independent of each other the operations can be performed in any order. The increased overhead 
from repetitive memory reads is offset by the increase in performance resulting from working with 
four triangles at a time.  

The steps of converting to integers and clamping are similar to the ones described in the previous 
section. The only difference is that every time these operations are performed, all slots in the 
XMM registers are utilized, indicating more efficient use. Figure 6 shows how the first and last 
bounding boxes are assembled from the six XMM registers. 

 

  

 

 

 

 

 

 

 

 

 

max1_z max2_zmax3_z max4_z max1_y max2_y max3_y min4_y max1_x max2_xmax3_x  max4_x 

min1_z  min2_z min3_z  min4_z min1_y  min2_y min3_y  min4_y min1_x  min2_x min3_x  min4_x 

 Box 3 Box 1 Box 4 Box 2 
 

                          Figure 5 Bounding Box output stream 

Relative performance, one triangle vs. four triangles at a time 
This section outlines results of processing triangle data using methods developed in the previous 
sections. The results below are for 2.5 million triangles generated randomly and processed to 

6   



compute their bounding boxes. The results show a 23 % improvement in performance for an 
OpenGL triangle data stream when the processing is done four triangles at a time vs. one triangle 
at a time (note both are SSE2 implementations).  

 

System  Time in seconds 

P4 1.7 GHz – SSE2 (four triangles) 0.24747 sec 

P4 1.7 GHz (one triangle) 0.3045sec 
                                

Table 1 - Performance of four triangles vs. one triangle at a time using SSE2 

OpenGL data in a tri-strip format 
OpenGL can often be instructed to arrange triangle data in a tri-strip format.  The advantage of this 
format is that the amount of data needed to describe the triangles is minimized. This section 
examines an approach similar in theme to the last section. A tri-strip is constructed by representing 
the starting triangle with all three vertices, but for each additional triangle (which shares an edge 
with the triangle), only the third (new) vertex is stored. Thus for 2 triangles 4 vertices are stored. 
In general for N triangles that can be represented in a tri-strip N+2 vertices are stored. Figure 7 
shows the construction of a tri-strip. Note the change in the vertex naming scheme. It is easy to 
remember which new vertex is describing the next triangle, for example the vertex with the suffix 
7 in the coordinates represents the 6th triangle in the tri-strip. 

 

 

 

 

 

 

 
                            Figure 6 - Tri-Strip arrangement 

The first 4 triangles in the tri-strip shown in Figure 6 would be represented in the stream below. 

 

X0 Y0 Z0 xx xx xx X1 Y1 Z1 Xx Xx Xx X2 Y2 Z2 Xx Xx xx 

 

X3 Y3 Z3 xx xx xx X4 Y4 Z4 Xx Xx Xx X5 Y5 Z5 Xx Xx xx 

 

1 
2 

3

4
5

6

(X0,Y0,X0) 

(X1,Y1,Z1) 

(X2,Y2,Z2) 

(X3,Y3,Z3) 

(X4,Y4,Z4) 

(X5,Y5,Z5) 

(X6,Y6,Z6) 

(X7,Y7,Z7) 

  7 



® SSE2 optimization strategies 

                         Figure 7 Tri-strip OpenGL data stream 

The triangles themselves are the following triads: 

Triangle 1 :  (X0,Y0,Z0),(X1,Y1,Z1),(X2,Y2,Z2) 

Triangle 2 : (X1,Y1,Z1),(X2,Y2,Z2),(X3,Y3,Z3) 

Triangle 3:  (X2,Y2,Z2),(X3,Y3,Z3),(X4,Y4,Z4) 

Triangle 4 : (X3,Y3,Z3),(X4,Y4,Z4),(X5,Y5,Z5)  

In this case, reading the five points from memory would complete all data required to construct the 
four triangles in XMM registers. Then a series of shuffles, masks, ANDs and ORs are performed 
to get the data in the format that is familiar from the last section. Once the first vector (xmm0) is 
completed, the next one is just a shift to the right and a shuffle of X4 (which comes from the next 
sequential point in the data stream) in the high order slot in the register. To get the minimum and 
maximum extents of the four triangles, two min() operations and two max() operations are needed. 
The process is illustrated for the x-components in the Figure 9 below. 

 

X3 X2 X1 X0 

X4 X3 X2 X1 

X5 X4 X3 X2 
Max 

Min  
Xmm0    =   

Min3_x Min2_x Min1_x Min0_x 
 

Xmm1    =   

Max3_x Max2_x Max1_x Max0_x  

Xmm4    =   

 
   Figure 8 Three way min and max for 4 triangles at a time (showing x-coordinate) 

The y-component and z-components can be handled similarly. The process of assembling the 
bounding boxes has been explained in detail in the previous sections. 

Relative performance, tri-strips vs. disjoint triangles 
It is obvious that the tri-strips method holds an advantage because there is lesser data involved, 
requiring fewer memory reads. In similar experiments as described in the previous sections 
(processing 2.5 million valid triangles) the SSE2 implementation that is developed for the tri-strip 
method of input data is approximately 20 % faster than the case for disjoint triangles. The 
improvement in performance is perhaps not as dramatic as would intuitively be expected (since the 
number of memory accesses are actually halved) because there is increased overhead in arranging 
the tri-strip data into appropriate XMM registers. 

 
 

System  Time in seconds 

P4 1.7 GHz – SSE2 (four triangles) 0.24747 sec 

8   



P4 1.7 GHz (one triangle) 0.3045 sec 

P4 1.7 GHz (tri-strips, four triangles) 0.2013 sec 

 

Summary 
This paper is meant to be instructional in the use of Streaming Single Instruction Multiple Data 
Extensions (SSE) in parallelizing computations in real world applications. An OpenGL data 
stream of triangles is considered and two different ways of parallelizing the computation of 
bounding boxes are investigated. It is explained how, even though both approaches are 
significantly better than non-SSE approaches, one approach outperforms that other because of 
more complete use of  SSE2 register resources. Performance is compared on an appropriate 
workload set of triangles. 
 

Appendix A 

SSE2 assembly code snippet for processing 4 triangles at a time 

 
movlps      xmm2, [eax+0] 
movhps      xmm2, [eax+6*4*3]          // xmm2: a1y,a1x,a0y,a0x 
movlps      xmm3, [eax+6*4*3*2] 
movhps      xmm3, [eax+6*4*3*3]       // xmm3: a3y,a3x,a2y,a2x 
shufps      xmm2,xmm3,0x88            // xmm2=a3x,a2x,a1x,a0x (**) 
 
movlps      xmm3, [eax+6*4] 
movhps      xmm3, [eax+6*4*3+6*4]      // xmm3: b1y,b1x,b0y,b0x 
movlps      xmm4, [eax+6*4*3*2+6*4] 
movhps      xmm4, [eax+6*4*3*3+6*4]    // xmm4: b3y,b3x,b2y,b2x 

shufps      xmm3,xmm4,0x88             // xmm3=b3x,b2x,b1x,b0x (**) 

 
movlps      xmm4, [eax+6*4*2] 
movhps      xmm4, [eax+6*4*3+6*4*2]    // xmm4: c1y,c1x,c0y,c0x 
movlps      xmm5, [eax+6*4*3*2+6*4*2] 
movhps      xmm5, [eax+6*4*3*3+6*4*2]  // xmm5: c3y,c3x,c2y,c2x 
shufps      xmm4,xmm5,0x88             // xmm4=c3x,c2x,c1x,c0x (**) 
 
movaps      xmm5, xmm2 
minps       xmm2, xmm3                 // xmm2: min x(not final) 
maxps       xmm5, xmm3                 // xmm5: max x(not final) 
minps       xmm2, xmm4                 // xmm2: min x-(final) (**) 
maxps       xmm5, xmm4                 // xmm5: max x-(final) (**) 
 
// Clamp all values onto [0.0 , 1023,0] 
movups  xmm3,[fOnekm]  // xmm3: 1023 | 1023 | 1023 | 1023 
xorps  xmm4,xmm4  // xmm4: 0 | 0 | 0 | 0 
maxps  xmm2,xmm4 
maxps  xmm5,xmm4 

  9 



® SSE2 optimization strategies 

minps  xmm2,xmm3       // xmm2: qfmin3x | qfmin2x | qfmin1x | qfmin0x 
 
minps  xmm5,xmm3       // xmm5: qfmax3x | qfmax2x | qfmax1x | qfmax0x 
 
cvttps2dq   xmm2,xmm2 
cvttps2dq   xmm5,xmm5 
 
xorps       xmm6,xmm6           //clear 
xorps       xmm7,xmm7           //clear 
por         xmm6,xmm2           //xmm6: minx3|minx2|minx1|minx0 
por         xmm7,xmm5           //xmm7: max3 | max2| max1| max0 
 
// do the y coord 
 
movlps      xmm2, [eax+0] 
movhps      xmm2, [eax+6*4*3]          // xmm2: a1y,a1x,a0y,a0x 
movlps      xmm3, [eax+6*4*3*2] 
movhps      xmm3, [eax+6*4*3*3]       // xmm3: a3y,a3x,a2y,a2x 
shufps      xmm2,xmm3,0xdd            // xmm2=a3y,a2y,a1y,a0y (**) 
 
movlps      xmm3, [eax+6*4] 
movhps      xmm3, [eax+6*4*3+6*4]      // xmm3: b1y,b1x,b0y,b0x 
movlps      xmm4, [eax+6*4*3*2+6*4] 
movhps      xmm4, [eax+6*4*3*3+6*4]    // xmm4: b3y,b3x,b2y,b2x 
shufps      xmm3,xmm4,0xdd             // xmm3=b3y,b2y,b1y,b0y (**) 
 
movlps      xmm4, [eax+6*4*2] 
movhps      xmm4, [eax+6*4*3+6*4*2]    // xmm4: c1y,c1x,c0y,c0x 
movlps      xmm5, [eax+6*4*3*2+6*4*2] 
movhps      xmm5, [eax+6*4*3*3+6*4*2]  // xmm5: c3y,c3x,c2y,c2x 
shufps      xmm4,xmm5,0xdd             // xmm4=c3y,c2y,c1y,c0y (**) 
 
movaps      xmm5, xmm2 
minps       xmm2, xmm3                 // xmm2: min y(not final) 
maxps       xmm5, xmm3                 // xmm5: max y(not final) 
minps       xmm2, xmm4                 // xmm2: min y-(final) (**) 
maxps       xmm5, xmm4                 // xmm5: max y-(final) (**) 
 
// Clamp all values onto [0.0 , 1023,0] 
movups  xmm3,[fOnekm]  // xmm3: 1023 | 1023 | 1023 | 1023 
xorps  xmm4,xmm4  // xmm4: 0 | 0 | 0 | 0 
maxps  xmm2,xmm4 
maxps  xmm5,xmm4 
minps  xmm2,xmm3       // xmm2: qfmin3y | qfmin2y | qfmin1y | qfmin0y 
minps  xmm5,xmm3      // xmm5: qfmax3y | qfmax2y | qfmax1y | qfmax0y 
 
cvttps2dq   xmm2,xmm2 
cvttps2dq   xmm5,xmm5 
 
pslld       xmm2,10 

10   



pslld       xmm5,10 
 
por         xmm6,xmm2     //xmm6: miny3,minx3|miny2,minx2|miny1,minx1|miny0,minx0 
por         xmm7,xmm5     //xmm7: maxy3,max3 | maxy2,max2| maxy1,max1| maxy0,max0 
 
// do the z coord 
movlps      xmm2, [eax+4*2] 
movhps      xmm2, [eax+6*4*3+4*2]          // xmm2: ~,a1z,~,a0z 
 
movlps      xmm3, [eax+6*4*3*2+4*2] 
movhps      xmm3, [eax+6*4*3*3+4*2]        // xmm3: ~,a3z,~,a2z 
shufps      xmm2,xmm3,0x88                 // xmm2=a3z,a2z,a1z,a0z (**) 
 
movlps      xmm3, [eax+6*4+4*2] 
movhps      xmm3, [eax+6*4*3+6*4+4*2]      // xmm3:~,b1z,~,b0z 
movlps      xmm4, [eax+6*4*3*2+6*4+4*2] 
movhps      xmm4, [eax+6*4*3*3+6*4+4*2]    // xmm4:~,b3z,~b2z 
shufps      xmm3, xmm4,0x88                // xmm3:b3z,b2z,b1z,b0z (**) 
 
movlps      xmm4, [eax+6*4*2+4*2] 
movhps      xmm4, [eax+6*4*3+6*4*2+4*2]    // xmm4: ~,c1z,~,c0z 
movlps      xmm5, [eax+6*4*3*2+6*4*2+4*2] 
movhps      xmm5, [eax+6*4*3*3+6*4*2+4*2]  // xmm5: ~,c3z,~,c2z 
shufps      xmm4,xmm5,0x88                 // xmm4=c3z,c2z,c1z,c0z (**) 
 
movaps      xmm5, xmm2 
minps       xmm2, xmm3                 // xmm2: min z(not final) 
maxps       xmm5, xmm3                 // xmm5: max z(not final) 
minps       xmm2, xmm4                 // xmm2: min z-(final) (**) 
maxps       xmm5, xmm4                 // xmm5: max z-(final) (**) 
 
// Clamp all values onto [0.0 , 1023,0] 
movups  xmm3,[fOnekm]  // xmm3: 1023 | 1023 | 1023 | 1023 
xorps  xmm4,xmm4        // xmm4: 0 | 0 | 0 | 0 
maxps  xmm2,xmm4 
 
maxps  xmm5,xmm4 
minps  xmm2,xmm3 // xmm2: qfmin3z | qfmin2z | qfmin1z | qfmin0z 
minps  xmm5,xmm3 // xmm5: qfmax3z | qfmax2z | qfmax1z | qfmax0z 
 
cvttps2dq   xmm2,xmm2 
cvttps2dq   xmm5,xmm5 
 
pslld       xmm2,20 
pslld       xmm5,20 
por         xmm6,xmm2     
//xmm6: minz3,miny3,minx3|minz2,miny2,minx2|minz1,miny1,minx1|minz0,miny0,minx0 
por         xmm7,xmm5            
//xmm7: maxz3,maxy3,max3 | maxz2,maxy2,max2| maxz1,maxy1,max1| maxz0,maxy0,max0 
 

  11 



® SSE2 optimization strategies 

movaps      xmm2,xmm6 
 
punpckldq   xmm6,xmm7           //xmm6: first 2 triangles max1|min1|max0|min0 
punpckhdq   xmm2,xmm7           //xmm2: next  2 triangles max3|min3|max2|min2 
 
//ship them out 
movdqu     [ebx],xmm6 
movdqu     [ebx+16],xmm2 
 

Appendix B 

SSE2 code snippet for tri-strips OpenGL data stream 

 
movups      xmm0,[eax]          // xmm0: xx,z0,y0,x0 
movups      xmm1,[eax+6*4]      // xmm1: xx,z1,y1,x1 
movups      xmm2,[eax+6*4*2]    // xmm2: xx,z2,y2,x2 
movups      xmm3,[eax+6*4*3]    // xmm3: xx,z3,y3,x3 
movups      xmm4,[eax+6*4*4]    // xmm4: xx,z4,y4,x4 
movups      xmm5,[eax+6*4*5]    // xmm5: xx,z5,y5,x5 
 
pshufd    xmm0,xmm0,0x10        // xmm0: xx,y0,xx,x0 
pshufd    xmm1,xmm1,0x40        // xmm1: y1,xx,x1,xx 
movaps    xmm6,[mask1]          // xmm6: 0xffffff,0,0xffffff,0 
pand      xmm1,xmm6             // xmm1: y1,0,x1,0 
psrldq    xmm6,4                // xmm6: 0x0,0xffffffff,0,0xffffffff, 
pand      xmm0,xmm6             // xmm0:  0,y0, 0,x0 
por       xmm0,xmm1             // xmm0: y1,y0,x1,x0 
 
pshufd    xmm2,xmm2,0x10        // xmm2: xx,y2,xx,x2 
pshufd    xmm3,xmm3,0x40        // xmm3: y3,xx,x3,xx 
pand      xmm2,xmm6             // xmm2:  0,y2, 0,x2 
pslldq    xmm6,4                // xmm6:0xffffff,0,0xffffff,0 
pand      xmm3,xmm6             // xmm3: y3, 0,x3, 0 
por       xmm2,xmm3             // xmm2: y3,y2,x3,x2 
 
movaps      xmm6, xmm0          // xmm6 = xmm0 
movaps      xmm7, xmm2          // xmm7 = xmm2 
shufpd      xmm0,xmm7,0         // ** xmm0: x3,x2,x1,x0 
 
psrldq     xmm6,8               // xmm6:0,0,y1,y0   -- shift right by bytes 
shufpd     xmm6,xmm2,2          // xmm6:y3,y2,y1,y0 
movaps     xmm2, xmm6           //** xmm2: y3,y2,y1,y0 
 
movaps      xmm1, xmm0          // xmm1 = xmm0 
movss       xmm1, xmm4          // xmm1: x3,x2,x1,x4 
pshufd      xmm1, xmm1,0x39     // ** xmm1: x4,x3,x2,x1 
movaps      xmm3, xmm2          // xmm3 = xmm2 
psrldq      xmm4, 4             // xmm4: 00,xx,z4,y4  // dont need x4 anymore 
movss       xmm3, xmm4          // xmm3: y3,y2,y1,y4 
pshufd      xmm3, xmm3,0x39     // ** xmm3: y4,y3,y2,y1 

12   



movaps      xmm4,xmm1           // xmm4 = xmm1 
 
movss       xmm4, xmm5          // xmm4: x4,x3,x2,x5 
pshufd      xmm4,xmm4,0x39      // **xmm4: x5,x4,x3,x2 
psrldq      xmm5, 4             // xmm5: 00,xx,z5,y5 // dont need x5 anymore 
 
movaps      xmm7, xmm3          // xmm7 = xmm3 
movss       xmm7,xmm5           // xmm7:  y4,y3,y2,y5 
pshufd      xmm7,xmm7,0x39      // xmm7:  y5,y4,y3,y2 
movaps      xmm5, xmm7          // **xmm5: y5,y4,y3,y2   
 
movaps xmm6, xmm0 
minps  xmm0, xmm1 
minps  xmm0, xmm4               // **xmm0: minx3,minx2,minx1,minx0 
maxps  xmm1, xmm6 
maxps  xmm1, xmm4               // **xmm1: maxx3, maxx2, maxx1, maxx0 
 
movaps xmm6, xmm2 
minps  xmm2, xmm3 
minps  xmm2, xmm5               // **xmm2: miny3,miny2,miny1,miny0 
maxps  xmm3, xmm6 
maxps  xmm3, xmm5               // **xmm3: maxy3,maxy2,maxy1,maxy0 
 
// Clamp all values onto [0.0 , 1023,0] 
movups  xmm7,[fOnekm]  // xmm7: 1023 | 1023 | 1023 | 1023 
xorps  xmm4,xmm4  // xmm4: 0 | 0 | 0 | 0 
maxps  xmm0,xmm4 
maxps  xmm1,xmm4 
minps  xmm0,xmm7 // **xmm0: qfmin3x | qfmin2x | qfmin1x | qfmin0x 
minps  xmm1,xmm7 // **xmm1: qfmax3x | qfmax2x | qfmax1x | qfmax0x 
 
cvttps2dq   xmm0,xmm0           // SSE2 
cvttps2dq   xmm1,xmm1           // SSE2 
 
xorps       xmm6,xmm6           //clear 
xorps       xmm7,xmm7           //clear 
por         xmm6,xmm0           //xmm6: minx3|minx2|minx1|minx0 
por         xmm7,xmm1           //xmm7: maxx3|maxx2|maxx1|maxx0 
 
// Clamp all values onto [0.0 , 1023,0] 
movups  xmm5,[fOnekm] // xmm5: 1023 | 1023 | 1023 | 1023 
xorps  xmm4,xmm4 // xmm4: 0 | 0 | 0 | 0 
maxps  xmm2,xmm4 
maxps  xmm3,xmm4 
minps  xmm2,xmm5 // xmm2: qfmin3y | qfmin2y | qfmin1y | qfmin0y 
minps  xmm3,xmm5 // xmm3: qfmax3y | qfmax2y | qfmax1y | qfmax0y 
 
cvttps2dq   xmm2,xmm2           // SSE2 
cvttps2dq   xmm3,xmm3           // SSE2 
 

  13 



® SSE2 optimization strategies 

pslld       xmm2,10 
 
pslld       xmm3,10 
 
//xmm6: miny3,minx3|miny2,minx2|miny1,minx1|miny0,minx0 
por         xmm6,xmm2            
//xmm7: maxy3,maxx3|maxy2,maxx2|maxy1,maxx1|maxy0,maxx0 
 
por         xmm7,xmm3           
 
// z's 
// have to perform the same fetches again but they should be in the cache 
movups      xmm0,[eax+2*4]            // xmm0: xx,xx,xx,z0 
movups      xmm1,[eax+6*4 + 2*4]      // xmm1: xx,xx,xx,z1 
movups      xmm2,[eax+6*4*2 + 2*4]    // xmm2: xx,xx,xx,z2 
movups      xmm3,[eax+6*4*3 + 2*4]    // xmm3: xx,xx,xx,z3 
movups      xmm4,[eax+6*4*4 + 2*4]    // xmm4: xx,xx,xx,z4 
 
// load a mask and mask everything: 
movaps  xmm5, [mask] 
pand xmm0, xmm5                        // xmm0: 0,0,0,z0 
pand xmm1, xmm5                        // xmm1: 0,0,0,z1 
pand xmm2, xmm5                        // xmm2: 0,0,0,z2 
pand xmm3, xmm5                        // xmm3: 0,0,0,z3 
pand xmm4, xmm5                        // xmm4: 0,0,0,z4 
 
pslldq xmm3, 0xc                      // xmm3: z3, 0, 0, 0 
pslldq xmm1, 0x4                      // xmm1:  0, 0,z1, 0 
pslldq xmm2, 0x8                      // xmm2:  0,z2, 0, 0 
por xmm0,xmm3 
por xmm0,xmm1 
por xmm0,xmm2                         // ** xmm0: z3,z2,z1,z0 
 
// do point 6 
movaps      xmm1, xmm5                // copy mask 
movups      xmm5,[eax+6*4*5 + 2*4]    // xmm5: xx,xx,xx,z5 
pand   xmm5,xmm1                      // xmm5: 0,0,0,z5 
 
movaps xmm1, xmm0                     // xmm1 = xmm0 
movss xmm1,xmm4                       // xmm1: z3,z2,z1,z4 
pshufd xmm1,xmm1,0x39                 // ** xmm1: z4,z3,z2,z1 
movaps xmm2,xmm1                      // xmm2 = xmm1 
movss xmm2,xmm5                       // xmm2: z4,z3,z2,z5 
pshufd xmm2,xmm2,0x39                 // ** xmm2: z5,z4,z3,z2 
 
movaps xmm3, xmm0 
minps xmm0,xmm1 
minps xmm0,xmm2                       // ** xmm0: minz3,minz2,minz1,minz0 
maxps xmm1,xmm3 
maxps xmm1,xmm2                       // ** xmm1: maxz3,maxz2,maxz1,maxz0 

14   



 
 
// Clamp all values onto [0.0 , 1023,0] 
movups  xmm3,[fOnekm]  // xmm3: 1023 | 1023 | 1023 | 1023 
xorps  xmm4,xmm4  // xmm4: 0 | 0 | 0 | 0 
maxps  xmm0,xmm4 
maxps  xmm1,xmm4 
minps  xmm0,xmm3 // xmm0: qfmin3z | qfmin2z | qfmin1z | qfmin0z 
minps  xmm1,xmm3 // xmm1: qfmaxx3z | qfmax2z | qfmax1z | qfmax0z 
 
cvttps2dq   xmm0,xmm0           // SSE2 
cvttps2dq   xmm1,xmm1           // SSE2 
 
pslld       xmm0,20 
pslld       xmm1,20 
//xmm6: minz3,miny3,minx3|minz2,miny2,minx2|minz1,miny1,minx1|minz0,miny0,minx0 
por         xmm6,xmm0            
//xmm7: maxz3,maxy3,maxx3|maxz2,maxy2,maxx2|maxz1,maxy1,maxx1|maxz0,maxy0,maxx0 
por         xmm7,xmm1            
 
movaps      xmm2,xmm6 
punpckldq   xmm6,xmm7           //xmm7: first 2 triangles max1|min1|max0|min0 
punpckhdq   xmm2,xmm7           //xmm2: next  2 triangles max3|min3|max2|min2 
 
//ship them out to memory 
movdqu     [ebx],xmm6 
movdqu     [ebx+16],xmm2 
 

  15 


	Abstract
	OpenGL Data Stream
	Bounding box computation

	Using SSE2, the simplest approach
	Inefficiency in this approach

	Using an improved SSE2 approach
	Relative performance, one triangle vs. four triangles at a time
	OpenGL data in a tri-strip format
	Relative performance, tri-strips vs. disjoint triangles
	Summary
	
	
	SSE2 assembly code snippet for processing 4 triangles at a time
	SSE2 code snippet for tri-strips OpenGL data stream




