

Responsible interns : Pierre Kuonen

François Kilchoer

Jean-François Roche

Guilherme Peretti Pezzi

Responsible externs : Barney Maccabe (UNM)

Rolf Riesen (Sandia Labs)

Tuan Anh Nguyen (HCMUT)

Expert : Peter Kropf (UNI-NE)

Student : Manuel Schrag

Date : 09/06/2007 to 11/14/2007

Improving POP-C++ for

HPC
Diplomawork 2007

Schrag Manuel

09/06/2007 – 11/09/2007

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

2 Report Schrag Manuel

TABLE OF CONTENTS

GENERAL INTRODUCTION .. 5

1. TECHNOLOGIES USED ...5

1.1. Ubuntu .. 5

1.2. POP-C++ .. 5

1.3. MPI .. 5

1.4. Computer cluster / GRID .. 5

2. OBJECTIVES ...6

3. PRESENTATION OF THE DOCUMENT ..6

COMPARISON BETWEEN POP-C++ AND MPI ... 7

1. INTRODUCTION {COMMON} ...7

2. ANALYSIS ...7

2.1. POP-C++ Runtime {common} .. 7

2.2. POP-C++ remote method call ... 8

2.2.1. Invocation semantics .. 9

2.3. The MPI standard {common} .. 10

2.3.1. MPI-processes .. 10

2.3.2. SPMD .. 11

2.4. MPI message passing (point-to-point) ... 11

2.4.1. Buffering ... 11

2.4.2. Blocking point-to-point communication .. 12

2.4.3. Non-blocking point-to-point communication ... 12

2.5. The “Phoenix” cluster ... 12

2.6. Benchmarking data sending ... 13

3. DESIGN ... 14

3.1. Cluster configuration .. 14

3.1.1. POP-C++ .. 14

3.1.2. OpenMPI ... 14

3.2. Benchmarking latency and data sending .. 14

3.2.1. MPI test scenario .. 15

3.2.2. POP-C++ test scenario .. 17

4. IMPLEMENTATION .. 18

4.1. MPI .. 18

4.1.1. Asynchronous latency and data sending .. 18

4.1.2. Synchronous latency and data sending .. 19

4.2. POP-C++ .. 20

4.2.1. Asynchronous latency and data sending .. 20

4.2.2. Synchronous latency and data sending .. 21

5. RESULTS .. 23

5.1. Prediction.. 23

5.1.1. OpenMPI asynchronous ... 24

5.1.2. OpenMPI synchronous ... 25

5.1.3. POP-C++ asynchronous ... 26

5.1.4. POP-C++ synchronous... 27

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

3 Report Schrag Manuel

5.1.5. Conclusion .. 28

5.2. Obtained results ... 29

5.2.1. Latency .. 29

5.2.2. Data sending ... 30

5.2.3. Measurement vs. prediction .. 34

5.2.4. Including unconcerned processes/objects ... 36

6. CONCLUSION ... 36

6.1. Encountered problems ... 36

6.1.1. Starting the “SXXparoc” service on computing nodes ... 36

6.1.2. ssh: Connection refused ... 37

6.1.3. Cluster access and disturbed measurements ... 37

6.2. POP-C++ vs. MPI ... 37

COLLECTIVE COMMUNICATION IN POP-C++ ... 39

1. INTRODUCTION {COMMON} ... 39

2. ANALYSIS ... 39

2.1. Collective communication in MPI ... 39

2.2. Collective communication in POP-C++ ... 41

2.3. The POP-C++ parser .. 43

3. DESIGN ... 46

3.1. Group representation ... 46

3.2. Collective communication operations .. 47

3.3. Architecture .. 49

3.4. Creating a “group parser” ... 52

3.5. Handling a group of remote objects for N-N communication .. 55

4. IMPLEMENTATION .. 55

4.1. Code models ... 55

4.2. Group parser ... 55

4.2.1. Including the group parser in the POP-C++ compilation process 58

4.3. Where to find the source code for the group parser? ... 59

4.4. Limitations and recommendations ... 59

4.4.1. Installing the distribution ... 59

4.4.2. Split application in logical parts .. 59

4.4.3. Remote objects as parameters ... 59

5. TESTS .. 61

6. FUTURE WORK .. 61

6.1. Parse C++ class declarations ... 61

6.2. Clean source code ... 61

6.3. Sophisticated algorithms for group method invocations ... 62

7. CONCLUSION ... 63

GENERAL CONCLUSION ... 64

1. PERSONAL CONCLUSION.. 64

2. THANKS .. 64

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

4 Report Schrag Manuel

APPENDIX ... 65

1. UNREALIZED DESIGNS ... 65

1.1. Syntax for collective communication ... 65

1.1.1. Create a stub for every collective communication operation .. 65

1.1.2. Differentiate incoming and outgoing methods .. 65

2. CD STRUCTURE .. 66

3. SOURCE CODE ... 67

3.1. Code model for the base POPGroup template ... 67

3.2. Code model for specialized POPGroup templates ... 67

3.3. Exception handling in collective communication ... 69

4. DEFINITIONS... 69

5. REFERENCES ... 71

6. FIGURES .. 72

7. TABLES.. 73

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

5 Report Schrag Manuel

General introduction

In this project, four different tasks figure in our goal specification. The work has to be split in two distinct

projects between the two students Manuel Schrag and Frédéric Barras. The goal is to improve the

language POP-C++ for High Performance Computing (HPC). For more details, please refer to section 2

Objectives. This project is realized at the University Of New Mexico (UNM) in Albuquerque, USA.

1. Technologies used

This is a brief description of the different technologies used during the project.

1.1. Ubuntu

Ubuntu is a distribution of the free operating system Linux and is based on Debian Linux. We use the

version 6.10, called Edgy Eft, on our notebooks. At this time (September 2007), the most recent version

is 7.04. This version is actually not compatible with our notebooks. After research on the internet, it

seems that it is a common problem that Ubuntu 7.04 has difficulties with hardware detection.

1.2. POP-C++

POP-C++ is a programming language which is derived from C++. It has been developed by the GridGroup

at the EIA-FR. Its main objective is to allow programmers to write object oriented applications which are

able to run objects on different workstations connected by a network. These objects are distributed

automatically during the execution of an application. At the time of this project, POP-C++ is running on

workstations with a Unix/Linux operating system.

The POP-C++ environment includes two main parts. First of all, a precompiler which is able to parse and

read a POP-C++ code to generate pure C++ code. This code is now ready to be compiled with a standard

C++ compiler. Secondly, the runtime: an environment which is necessary to run the parallel distributed

objects.

1.3. MPI

MPI (Message passing interface) is a standard, describing message passing in parallel computing on a

distributed computer system. The programming interface specifies a collection of operations and their

semantics.

The implementation of MPI used during this project is OpentMPI v1.2.3 which implements the MPI-2

standard. It is delivered with C/C++ and Fortrand 77 resp. Fortrand 90 compilers. The programmer can

choose to write programs in one of these languages. Throughout this document when talking about

MPI, we always make reference to this standard and this implementation.

1.4. Computer cluster / GRID

A computer cluster is a group of connected computers working together. They are commonly connected

to each other by a fast local area network, allowing them to share tasks though they can be viewed as a

single computer. Clusters are used for different tasks (e.g. Load-balancing). We will use a cluster for high

performance computing. Programs which are designed to run on such a cluster (e.g. MPI-programs) split

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

6 Report Schrag Manuel

the main problem in different smaller tasks to distribute them on different nodes on the cluster. These

tasks are computed in parallel which increases the performance.

The main differences between a cluster and a GRID:

• GRID computing is dedicated to work on computers that can be geographically separated

• Computers on a GRID are quite autonomous and are not dedicated to accomplish only subtasks

on this network

2. Objectives

This project will help improve the POP-C++ programming language in high performance computing. The

first step will be the comparison with the MPI programming interface. This will help us to find eventual

weak points of POP-C++. The second step is to add global communication to POP-C++. Global

communication makes it possible for remote objects to communicate by broadcasting (point-to-

multipoint message passing). The next step will be the development of a convenient method to create

arrays of parallel objects using different personalized constructors. Until now, only the default

constructor is used. The last step in the project is the validation of the asynchronous object creation in

the most recent version of POP-C++.

In our planning, we must include the details about the two first parts. If we manage to finish them

before the end of the project, the rest of the time is used for the two last tasks.

3. Presentation of the document

This document is subdivided in five main sections:

• a general introduction: Gives an overview of the project. Describes the objective(s) of the

project and the technologies used.

• the first part of the project which is the comparison between MPI and POP-C++: This section

contains a general analysis of MPI and POP-C++ followed by the design and implementation of

the test scenarios used to accomplish the comparison. A subsection called Results presents the

results of these tests.

• the second part of the project which is adding collective communication to POP-C++: It contains

an analysis of how collective communication works in MPI and how it can be embedded in an

object oriented programming language. This analysis is followed by the design and

implementation of a POP-C++ distribution including collective communication.

• a general conclusion: This section contains my personal conclusion of the project and my thanks

to all the persons supporting me during the work.

• an appendix: Contains references, definitions, extracts of source code, the structure of the

attached CD and an index of all figures and tables of the document. Another subsection

describes unrealized designs which were discussed during the project.

References are noted between brackets ([]).

Common parts can are noted {common} in the title of the corresponding section.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

7 Report Schrag Manuel

Comparison between POP-C++ and MPI

1. Introduction {common}

In this part of the project, we have to compare POP-C++ to another distributed programming interface

called MPI, implemented in OpenMPI (other implementations exist: e.g. MPICH). We have to define a

test scenario to measure the differences between POP-C++ and MPI in terms of performance. To do this,

we must implement equal test programs in both languages and run them on a cluster under identical

conditions. The result will permit us to determine which language is slower in which part of the program

and where their weaknesses are. This kind of comparison is called Benchmarking.

2. Analysis

This chapter is an analysis of the technologies used (POP-C++ and MPI) for the benchmarks on a cluster

and issues related to benchmarking on multiple nodes.

2.1. POP-C++ Runtime {common}

This is only a short description of the POP-C++ runtime. A complete description is available in, “WSDL

with POP-C++” [3].

The POP-C++ Runtime contains the following classes:

• Interface : the local representation of a remote object

• Broker : makes the translation between network messages and method call on the remote

object

• Combox : contains the socket for the network communication

• JobManager : manages the resources and places objects on remote nodes

• Buffer : packs/unpacks the data which have to be sent/received

• Objects : are the real remote object, always bound with a buffer, and an interface on the local

side.

Every remote object has an interface on the local runtime, which has the same methods with the same

signatures. Seen from the local runtime, calling a method on a remote object or on a local object makes

no difference. When a method call is received by the interface, it is forwarded through the network to

the remote object by using the combox and the buffer. The broker attached to the remote object

receives the packet and translates it into a method call for the object in order to send back the result, if

necessary.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

8 Report Schrag Manuel

Figure 1 The POP-C++ class diagram

This diagram shows the different classes of the POP-C++ runtime (Figure 1), on the left are the classes

used exclusively on the local part, on the right the classes used by the remote part and in the middle,

the classes used by both local and remote parts. MyObjectBroker and MyParocObject are the remote

part of our object. MyObjectBroker receives and serves requests and calls the corresponding methods

on MyParocObject.

2.2. POP-C++ remote method call

The diagram below shows the simplified call of a method on a remote object (Figure 2). The Interface,

which represents the remote object on the local machine, sends data via the combox through the

network. This data includes all the information needed to invoke the remote method such as:

• Which method to invoke

• What parameters (type, size)

 On the remote machine, the corresponding combox receives the data, which will be processed to filter

out the information mentioned before to finally invoke the correct method with the passed parameters.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

9 Report Schrag Manuel

Figure 2 Simplified remote method call in POP-C++

2.2.1. Invocation semantics

To properly design a test scenario, it is necessarily to know the different object-sided invocation

semantics of a method in POP-C++. The figure below shows the effect on the called object (Figure 3).But

on the caller side also, two different semantics are possible.

• A synchronous call waits for the called method on the remote object to return

• An asynchronous call doesn’t wait for the called method to return. It continues processing once

the call has been posted

For more details, consult the “User and Installation Manual” of POP-C++ [4].

Figure 3 Different object-sided invocation requests [4]

Local machine Remote machine

 : Object : Interface : combox : Broker : Object : combox

1 : invoke remote method()
2 : wait for request()

3 : send()

4 : data goes through network
5 : receivedRequest

6 : wait for return()
7 : invoke method()

8
9 : send return()

10 : return goes through network

11 : receivedReturn
12

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

10 Report Schrag Manuel

2.3. The MPI standard {common}

MPI uses the message passing paradigm to communicate in a distributed memory system (Figure 4).

Each memory entity is accessible only via its corresponding processor (CPU). To communicate,

processors use a network which connects them to each other. Messages can be sent and received in

different manners. For example, it can be passed in a blocking way, which is very safe but slow, or in a

non-blocking way, which can increase the performance of a program by eliminating active waiting of the

CPU.

Figure 4 Distributed Memory System [2]

Message passing is used to exchange data between processes. Process A sends a memory buffer (data)

of its application memory through the network to process B, which receives the message and stores it

into his application memory.

2.3.1. MPI-processes

It is important to understand the difference between a process (set of executable instructions) and a

processor (hardware)! More than one process can execute on the same processor but will nevertheless

communicate via message passing. MPI differentiates processes by their rank. Every process is identified

by a number going from 0 to N-1, where N is the number of processes running.

Every MPI-programmer has to be aware about issues related to concurrent computing. In an MPI-

application, there is usually more than one process running at the same time. They communicate

between each other in either a blocking or non blocking way. In case of inappropriate use of the

message passing routines provided by MPI, unexpected consequences may show up (e.g. Dead-lock or

data loss). Different communication events can take place during message passing:

• copying a message from application memory to system memory (send buffer)

• arrival of a message

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

11 Report Schrag Manuel

2.3.2. SPMD

Programming in MPI applies the SPMD (Single Program, Multiple Data) mechanism. This means that the

same program is running everywhere. To avoid that every process executes exactly the same

instructions, they have to be differentiated in the program by their rank. A model which is very often

used is to differentiate only process 0 from the rest of the processes.

if rank==0

 send(message)

else

 receive(message)

2.4. MPI message passing (point-to-point)

This chapter describes the different manners of message passing in a point-to-point communication.

Point-to-point means that the message has one sender and only one receiver. For more details, consult

reference [2].

Criteria for successful communication are

• The sender specifies what message to pass (buffer, size)

• The buffer size of the receiver has to be large enough to store the message

• The sender has to specify a valid destination rank

• The receiver has to specify a valid source rank

• Sender and receiver have to specify the data type they want to send/receive

• Each message is accompanied by a tag (positive integer) which has to match

• A communicator has to be specified in sends and receives. The communicator defines which

collection of processes may communicate with each other.

2.4.1. Buffering

As mentioned before, MPI’s goal is to transport a piece of memory from one node to another by passing

it in a message. However, it is possible that data is not going directly from one application buffer to the

other, but has to be copied to/from system buffer before (Figure 5).

Figure 5 Message passing with buffering at receive [2]

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

12 Report Schrag Manuel

This can happen for example, when process B is not yet ready to receive the message which process A is

trying to send him. In the meantime, the message has to be copied to process B’s system buffer, and

recopied later to the application buffer.

2.4.2. Blocking point-to-point communication

A blocking send/receive is the safest way to communicate.

For sends: The program doesn't continue until the data has been successfully sent to the corresponding

receive, or copied to the system buffer. If one of the mentioned communication events is fired, it is safe

to reuse the memory buffer containing the data.

For receives: The program is blocked until the data is completely stored in the application buffer

allocated for this receive.

2.4.3. Non-blocking point-to-point communication

A non-blocking routine doesn't wait the firing of a communication event. It returns directly to the caller

after having posted the request of the send/receive. Thus it is up to the programmer to ensure that the

memory buffer used in the corresponding send/receive is not used until the data is completely

transferred from one process to the other or to the system buffer. Non-blocking communication is less

safe than blocking communication, but allows processes to reduce active waiting and can improve the

performance of a program.

2.5. The “Phoenix” cluster

Phoenix is a 16 node cluster for parallel processing research in the “Scalable systems labor” at the

University of New Mexico (UNM). Each node contains two 2.4 GHz AMD Opteron processors, 2 GB of

RAM, gigabit ethernet networking and InfiniBand networking. Only the head node contains disks. The

other 15 nodes must be booted from the network. The currently installed MPI-2 implementation is

OpenMPI v.1.2.3 (see Phoenix overview [5]).

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

13 Report Schrag Manuel

2.6. Benchmarking data sending

This test scenario consists in measuring the time to send a quantity of data from the local application

buffer to the remote one (point-to-point). To measure accurate values, the operation of data sending

has to be isolated in both technologies (Table 1).

MPI POP-C++

1 Complete initialization procedure (MPI_INIT) Local object is ready to send data

2 Synchronize processes The remote object has been created and is ready

to receive a request

3 Start timer Start timer

4 Send raw quantity of data in a blocking way

to the receiver

Invoke a method on the remote object by

passing a raw quantity of data as a parameter

5 Copy data from senders application buffer in

the system buffer

6 Copy data from senders system buffer to

receivers system buffer

7 Copy data from system buffer to receivers

application buffer

8 The receiver copies the data in his

application buffer

Remote object receives the data from a

parameter

9 Stop timer Stop timer

Table 1 Optimal benchmarking for data sending in POP-C++ and MPI

(The highlighted steps #5 to #7 are not always executed, but they might be depending on the message

size)

As we can see, the operation is isolated but there is a problem with the timer. We have to start the

timer on the side of the initiator and stop it on the side of the receiver. But since there is no global clock

available in parallel computing, the timer cannot be correctly handled like this. Thus, the timer has to be

started and stopped on the same side. We’ll have to take this fact into consideration to design a correct

test scenario.

Another point to take care about could be the existence of operating system interruptions. The process

dedicated to send and receive messages might not be the only resource which is accessing the CPU. To

minimize those interruptions, the process needs to have a high priority and the fewer other processes

are running on the node the better it is. However, for the comparison between MPI and POP-C++, those

interruptions can be neglected, because they’ll happen in both technologies, and might be filtered out

in the phase of interpreting the results.

The next chapter is the design of test scenarios to benchmark data sending in MPI and POP-C++ taking

into consideration the above discussed points.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

14 Report Schrag Manuel

3. Design

This chapter contains the configuration of the two technologies (POP-C++, OpenMPI) on the cluster and

the design of the different test scenarios.

3.1. Cluster configuration

The nodes on the cluster are named as follows:

• Head node: phx_head

• Compute nodes: phx0 – phx14

3.1.1. POP-C++

To get the most accurate results for latency benchmarks, POP-C++ is configured to run only one job per

computing node. The head node is not supposed to run any jobs at all. It is designated to create the

parallel objects on the computing nodes and to gather the results and print them on the output.

3.1.2. OpenMPI

Per default, InfiniBand is used on phoenix for communication. Nevertheless it is possible to use TCP over

Ethernet by specifying it on the command line when executing the application. But it seems that this

feature is not optimally implemented in OpenMPI [6]. This fact has to be considered during the test

phase. To guarantee the same circumstances as in POP-C++, only one process will run on each

computing node and no processes on the head node.

OpenMPI uses two different protocols depending on the message size. An Eager protocol for short

messages and a Rendez-vous protocol for long messages. The boundary of these protocols is individually

configurable on clusters. Phoenix has the following configuration:

• For Ethernet: TCP eager limit = 65536Bytes (64KB)

• For InfiniBand: openib eager limit = 12288Bytes (12KB)

During the tests, it will be interesting to see if there is a jump in that area of the resulting graph.

3.2. Benchmarking latency and data sending

The most common test scenario to benchmark latency and sending data from one application buffer to

the other is the ping-pong test. It consists in sending data to the receiver and waiting for its

acknowledgment. But it would be inaccurate to measure the time for one message (and one

acknowledgement) only, because there may be big differences from one result to another. To get a

representative result, the scenario consists in passing data in a loop and taking the average of the

measurements. Another way to evaluate the result could be by taking the best measurement.

I consider two different test scenarios in each technology, an asynchronous and a synchronous. The

synchronous is the “real” ping-pong application but includes more operations which are not part of the

pure sending process. This is why I expect that the asynchronous scenario will deliver more accurate

results.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

15 Report Schrag Manuel

3.2.1. MPI test scenario

To understand the test scenarios, some basic MPI routines are essential to know:

MPI_Irecv Posts a request to allocate a memory space which can serve as a receive buffer. After this,

the process continues without waiting for the actual reception of the message. To see if

the message is available in the application buffer, the requests status has to be consulted

(see Wait routine).

MPI_ISend Identifies a memory space which will serve as a send buffer. The program continues

without waiting for the data to be copied out of the application buffer. To check if the

data has left the buffer, the status of the send request has to be consulted (see Wait

routine).

MPI_Recv Blocks until the message is available in the application buffer.

MPI_Send Blocks until the application buffer containing the data to send, is ready for reuse.

MPI_Rsend Blocking ready send. Should only be used if the programmer is certain that the matching

receive has already been posted.

MPI_Wait MPI_Wait blocks until a specified non-blocking send or receive operation has completed.

Figure 6 Asynchronous MPI latency and data sending test scenario

To synchronize the processes, a blocking “READY” message is used. Now Process 0 can start the

measurement. Within the loop, it sends unblocking messages to Process 1 by passing the desired

quantity of data. Once Process 0 has finished the loop, it has to wait for the acknowledgment of Process

Process 0 Process 1

1 : Recv(READY)

2 : Send(READY)

Start Loop

3 : startTimer()

End Loop

4 : Recv(data, LATENCY)
5 : ISend(data, LATENCY, latency_wait)

6 : Recv(FINISH)

7 : Send(FINISH)

8 : stopTimer()

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

16 Report Schrag Manuel

1 (“FINISH” message) before stopping the timer. This acknowledgment ensures that all the data has

been communicated. As we can see, it is not possible to measure the time for one send only, but we

can estimate it by averaging the whole loop (Figure 6).

Remark: Often, MPI_ISend is accompanied by a call to MPI_Wait to check if the data has been

completely copied out of the buffer (by checking the status of the request “latency_wait”). In our case

there is no need for that, because we are not interested in the actual contents of the buffer but only in

its size. And moreover, the contents never change.

Figure 7 Synchronous MPI latency and data sending test scenario

Both processes post an unblocking receive at the beginning of the scenario, so they already have a

memory buffer available when the message or acknowledgment arrives. The blocking “READY” message

is used to synchronize the processes before starting the timer; then the actual measurement takes

place. Process 0 sends the data first and then waits for the posted receive request and Process 1 does

exactly the opposite (Figure 7). Contrary to the asynchronous test, the time for a single send can be

captured. Thus we have possibility to figure out minimum and maximum time for data sending, not only

the average of the entire loop.

Process 0 Process 1

1 : Irecv(LATENCY, latency_wait) 2 : Irecv(LATENCY, latency_wait)

3 : Recv(READY)

4 : Send(READY)

5

6 : startTimer() 7 : Wait(latency_wait)

8 : Rsend(data, LATENCY)

910 : Wait(latency_wait)

11 : Rsend(data, LATENCY)

12

13 : stopTimer()

Loop

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

17 Report Schrag Manuel

3.2.2. POP-C++ test scenario

Figure 8 Asynchronous POP-C++ latency and data sending test scenario

The main program creates two parallel objects. Object 1 starts the timer. Within a loop, it invokes an

asynchronous method on Object 2 by passing data in a parameter. Once the loop has finished, Object 1

calls a synchronous method on Object 2. When this method call returns, all preceding asynchronous

calls have been processed and Object 1 can stop the timer in order to calculate the average result

(Figure 8). In this case, it is not possible to measure minimum and maximum values of a single send.

Figure 9 Synchronous POP-C++ latency and data sending test scenario

Object 1 Object 2

Start loop

1 : startTimer()

2 : async send(data)

3 : sync GetFinished()

End loop

45 : stopTimer()

Object 1 Object 2

1 : startTimer()

2 : sync send(data)

3 : return(data)
4 : stopTimer()

Loop

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

18 Report Schrag Manuel

Object 1 simply calls a synchronous method on Object 2 by passing data as a parameter. This method

returns the same quantity of data back to the caller, Object 1 (Figure 9). It is possible to capture

minimum, maximum and average values used for the data sending process.

The next chapter presents the implementation of the test scenarios in the current chapter.

4. Implementation

Four different test programs have been implemented, two in each technology, and are introduced in

this chapter. Every program prints the results to the output:

• Names or IP addresses of the nodes where a process/object is executed

• Size of the passed message in bytes

• Average time for data sending in micro seconds

• Estimated average bandwidth in mega bytes per second (ignoring latency)

In addition to that, the synchronous test programs print:

• Minimum and maximum time for data sending in micro seconds

• Estimated Minimum and maximum bandwidth in mega bytes per second (ignoring latency)

4.1. MPI

The MPI test programs are written in the C programming language.

4.1.1. Asynchronous latency and data sending

By default, the program starts by sending a 0byte message from process 0 to process 1. Then process 0

waits for the acknowledgment of the same length. This is repeated 1000 times to print the average time

to the output (see screenshot Figure 10). Then the program does the same for messages of 16, 32, 48,

…, 1024 bytes in length.

Different arguments can be passed on the command line to personalize the test:

• -s: length of the first message (start length: default 0)

• -e: maximum length of the last message (end length: default 1024)

• -i: how to increment the message length (default 16)

• -t: number of trials for each message length (default 1000)

• -k: defines that the values in -s ,-e, -i are indicated in kilobytes

By executing the program with mpiexec, the number of processes to run has to be specified. Useful

communication (for this test) takes place between only two processes. That’s why a minimum of two is

required, but it’s not limited to that. If more processes are running, the ones which are not involved in

the useful point-to-point communication are just consuming a message in every iteration which has

been send by process 0. This allows us to test how the number of running processes affects

performance.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

19 Report Schrag Manuel

Figure 10 Screenshot of asynchronous test program in MPI

Examples:

mpiexec -np 2 -mca btl self,tcp -hostfile hostfile ./main -s 0 -e 1024 -i 64 -t 1000

Run the test program with 2 processes over tcp. The available computing nodes are listed in a hostfile.

Provide results for 1000 trials each of length 0 through 1024B in increments of 64B.

mpiexec -np 8 -hostfile hostfile ./main -s 1 -e 128 -i 16 -t 500 -k

Run the test program with 8 processes over InfiniBand. The available computing nodes are listed in a

hostfile. Provide results for 500 trials each of length 1 through 128KB in increments of 16KB.

4.1.2. Synchronous latency and data sending

By default, the program starts by sending a 0byte message from process 0 to process 1. Then process 0

waits for the acknowledgment of the same length. This is repeated a 1000 times. During that operation,

the minimum, maximum and total value is continuously updated in a variable to print the result

(minimum, average and maximum) to the output (see screenshot Figure 11). Then the program does the

same for messages of 16, 32, 48, …, 1024 bytes length.

Different arguments can be passed on the command line to personalize the test:

• -s: length of the first message (start length: default 0)

• -e: maximum length of the last message (end length: default 1024)

• -i: how to increment the message length (default 16)

• -t: number of trials for each message length (default 1000)

• -k: defines that the values in -s ,-e, -i are indicated in kilobytes

By executing the program with mpiexec, the number of processes to run has to be specified. Useful

communication (for this test) takes place between only two processes. That’s why a minimum of two is

required, but it’s not limited to that. If more processes are running, the ones which are not involved in

the useful point-to-point communication are just consuming a message sent by process 0 in each

iteration. This allows us to test how the number of running processes affects performance.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

20 Report Schrag Manuel

Figure 11 Screenshot of synchronous test program in MPI

Examples:

mpiexec -np 2 -mca btl self,tcp -hostfile hostfile ./main -s 0 -e 1024 -i 64 -t 1000

Run the test program with 2 processes over tcp. The available computing nodes are listed in a hostfile.

Provide results for 1000 trials each of length 0 through 1024B in increments of 64B.

mpiexec -np 8 -hostfile hostfile ./main -s 1 -e 128 -i 16 -t 500 -k

Run the test program with 8 processes over InfiniBand. The available computing nodes are listed in a

hostfile. Provide results for 500 trials each of length 1 through 128KB in increments of 16KB.

4.2. POP-C++

This chapter explains the POP-C++ test program implementations corresponding to the design in section

3.2.2.

4.2.1. Asynchronous latency and data sending

This implementation consists in invoking an asynchronous method on a remote object by passing data in

a parameter to measure latency. See the signature of this method below:

async void pingAC(

[in, size=len] char *buf, int len

);

By default, the program creates two parallel objects. Object 1 calls the asynchronous method on Object

2 by passing a buffer of 0bytes length a 1000 times. After that, Object 1 calls a synchronous method on

Object 2 to make sure that all asynchronous invocations have been treated and stops the timer. Then

the main program prints the average value to the output (see screenshot Figure 12) and redoes the

same for buffers of 16, 32, 48, …, 1024 bytes length.

Different arguments can be passed on the command line to personalize the test:

• -s: length of the first message (start length: default 0)

• -e: maximum length of the last message (end length: default 1024)

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

21 Report Schrag Manuel

• -i: how to increment the message length (default 16)

• -n: number of parallel objects to create (default 2)

• -t: number of trials for each message length (default 1000)

• -k: defines that the values in -s ,-e, -i are indicated in kilobytes

One has the choice to create more than two parallel objects. Useful communication (for this test) takes

place between only two parallel objects. That’s why a minimum of two is required, but it’s not limited to

that. If more parallel objects are running, the ones which are not involved in the useful point-to-point

communication are just consuming a method call initiated by Object 1 in each iteration. This allows us to

test how the number of living parallel objects affects performance.

Figure 12 Screenshot of asynchronous test program in POP-C++

Examples:

parocrun objmap ./main -s 0 -e 1024 -i 64 -n 2 -t 1000

Run the test program with 2 parallel objects. Provide results for 1000 trials each of length 0 through

1024B in increments of 64B.

parocrun objmap ./main -s 1 -e 128 -i 16 -n 8 -t 500 -k

Run the test program with 8 parallel objects. Provide results for 500 trials each of length 1 through

128KB in increments of 16KB.

4.2.2. Synchronous latency and data sending

The idea of this test is to call a synchronous method on a remote object by passing data in a parameter

to measure latency. See the signature of this method below:

sync void pingSC(

[in, size=len] char *buf, [out, size=len] char *retbuf, int len

);

By default, the program creates two parallel objects. Object 1 calls the synchronous method on Object 2

by passing a buffer of 0bytes length. Since the second parameter is an output parameter, it has to be

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

22 Report Schrag Manuel

transported back to Object 1. This is repeated a 1000 times. Then the main program prints the

minimum, average and maximum values to the output (see screenshot Figure 13) and redoes the same

for buffers of 16, 32, 48, …, 1024 bytes length.

Different arguments can be passed on the command line to personalize the test:

• -s: length of the first message (start length: default 0)

• -e: maximum length of the last message (end length: default 1024)

• -i: how to increment the message length (default 16)

• -t: number of trials for each message length (default 1000)

• -n: number of parallel objects to create (default 2)

• -k: defines that the values in -s ,-e, -i are indicated in kilobytes

One has the choice to create more than two parallel objects. Useful communication (for this test) takes

place between only two parallel objects. That’s why a minimum of two is required, but it’s not limited to

that. If more parallel objects are running, the ones which are not involved in the useful point-to-point

communication are just consuming a method call initiated by Object 1 in each iteration. This allows us to

test how the number of living parallel objects affects performance.

Figure 13 Screenshot of synchronous test program in POP-C++

Examples:

parocrun objmap ./main -s 0 -e 1024 -i 64 -n 2 -t 1000

Run the test program with 2 parallel objects. Provide results for 1000 trials each of length 0 through

1024B in increments of 64B.

parocrun objmap ./main -s 1 -e 128 -i 16 -n 8 -t 500

Run the test program with 8 parallel objects. Provide results for 500 trials each of length 1 through

128KB in increments of 64KB.

The results provided by these test programs are presented in the next chapter.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

23 Report Schrag Manuel

5. Results

This chapter includes a prediction of the tests which will be performed and the actual measurements to

finally compare theory and reality.

5.1. Prediction

To detect and explain abnormal behavior in the data sending measurements, a prediction of latency and

used bandwidth is necessary. This prediction is searched by making basic measurements several times.

By sending 0Byte messages repetitively, the latency can be captured. To find the average bandwidth, we

send messages in the range of 10 – 100Kbytes. The formula � =
���

∆�	�
 (where len is the size of the data,

∆t the time used for the operation and
 the estimated latency) lets us calculate the bandwidth of each

step.

The used network is Gigabit Ethernet. This means that the theoretical attainable bandwidth amounts to

����
���
�������

�
����

�
 ∗ ����

�
��

∗ ����
��
��

≅ 119 !/#.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

24 Report Schrag Manuel

5.1.1. OpenMPI asynchronous

By running the test program as follows on the cluster, the average latency can be determined. It is

between 5 and 6µs (Figure 14). The first result is not taken into consideration. TCP seems to do need a

“warmup” when running over TCP [6].

mpiexec –np 2 –hostfile hostfile –mca btl self,tcp ./main –s 0 –e 0 –i 0 –t 10000

Figure 14 Output to define latency of OpenMPI asynchronous

The same program is executed to find the average Bandwidth, but with different arguments.

mpiexec –np 2 –hostfile hostfile –mca btl self,tcp ./main –s 10240 –e 102400 –i 10240 –t 10000

Size [Bytes] ∆t –latency [µs] Bandwidth [MB/s]

10240 89.26 114.72104

20480 171.05 119.731073

30720 257.99 119.074383

40960 344.92 118.752174

51200 431.96 118.529493

61440 518.84 118.418009

71680 765.73 93.6100192

81920 871.07 96.4820333

92160 923.83 99.7586136

102400 1018.79 100.511391

Average 109.958823
Table 2 Output to define average bandwidth of OpenMPI asynchronous

The average bandwidth is ~110MB/s (Table 2).

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

25 Report Schrag Manuel

5.1.2. OpenMPI synchronous

By running the test program as follows on the cluster, the average latency can be determined. It is

between 49 and 50µs (Figure 15).

mpiexec –np 2 –hostfile hostfile –mca btl self,tcp ./main –s 0 –e 0 –i 0 –t 1000

Figure 15 Output to define latency of OpenMPI synchronous

The same program is executed to find the average Bandwidth, but with different arguments.

mpiexec –np 2 –hostfile hostfile –mca btl self,tcp ./main –s 10240 –e 102400 –i 10240 –t 1000

Size [Bytes] ∆t –latency [µs] Bandwidth [MB/s]

10240 130.61 74.5215

20480 210.14 92.69904

30720 307.23 99.63674

40960 405.66 100.3946

51200 491.57 103.4573

61440 583.35 104.6981

71680 745.43 95.68816

81920 834.65 97.91313

92160 911.59 100.2349

102400 1008.42 101.0051

Average 97.02487
Table 3 Output to define average bandwidth of OpenMPI synchronous

The average bandwidth is ~97MB/s (Table 3).

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

26 Report Schrag Manuel

5.1.3. POP-C++ asynchronous

By running the test program as follows on the cluster, the average latency can be determined. In this

case, it is between 8 and 9µs (Figure 16).

parocrun objmap ./main –s 0 –e 0 –i 0 –t 1000

Figure 16 Output to define latency of POP-C++ asynchronous

The same program is executed to find the average Bandwidth, but with different arguments.

parocrun ./main –s 10240 –e 102400 –i 10240 –t 1000

Size [Bytes] ∆t –latency [µs] Bandwidth [MB/s]

10240 77.93 128.1922884

20480 164.5 123.010391

30720 251.57 121.1308702

40960 338.61 120.2548369

51200 425.67 119.7212739

61440 512.73 119.3496377

71680 599.77 119.1073595

81920 686.84 118.9159372

92160 773.99 118.7736007

102400 860.99 118.6544768

Average 120.7110672
Table 4 Output to define average bandwidth of POP-C++ asynchronous

The average bandwidth is ~121MB/s (Table 4). This is even higher than the theoretical attainable

bandwidth. An explanation for that is the fact that the latency measurement takes CPU cycles into

account which extend the measured time and thus increases the calculated bandwidth.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

27 Report Schrag Manuel

5.1.4. POP-C++ synchronous

By running the test program as follows on the cluster, the average latency can be determined. It is

between 46 and 47µs (Figure 17).

parocrun objmap ./main –s 0 –e 0 –i 0 –t 1000

Figure 17 Output to determine latency of POP-C++ synchronous

The same program is executed to find the average Bandwidth, but with different arguments.

parocrun ./main –s 10240 –e 102400 –i 10240 –t 1000

Size ∆t –latency [µs] Bandwidth [MB/s]

10240 130.01 78.5517

20480 214.1 94.05281

30720 320.49 95.8293

40960 424.19 96.03076

51200 523.08 97.73044

61440 632.42 97.18905

71680 730.58 98.19985

81920 848.45 96.66533

92160 966.67 95.39286

102400 1066.39 96.40188

Average 94.6044
Table 5 Output to define average bandwidth of POP-C++ synchronous

The average bandwidth is ~95MB/s (Table 5).

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

28 Report Schrag Manuel

5.1.5. Conclusion

By using the predicted information about latency and bandwidth, the time used for a certain message

size can be calculated using � =
���

�
+ � , where
 is the latency, len the message size and B the

bandwidth. This formula corresponds to a linear function y = ax + b and thus � is the y-axes intercept and
�

%
 the slope of the function (len is the x-axes variable).

Figure 18 Prediction of the test scenarios

The asynchronous programs in both technologies should provide better results than the synchronous

ones (Figure 18).

According to the chart, additional work has to be done in the synchronous versions when the message

size increases because the slope of the function is steeper. Actually I cannot see the reason why,

because all programs use the same protocol and encoding to transport the data over the network. We

will see if the measurements correspond to those predictions.

0

2000

4000

6000

8000

10000

12000

0

6
5

5
3

6

1
3

1
0

7
2

1
9

6
6

0
8

2
6

2
1

4
4

3
2

7
6

8
0

3
9

3
2

1
6

4
5

8
7

5
2

5
2

4
2

8
8

5
8

9
8

2
4

6
5

5
3

6
0

7
2

0
8

9
6

7
8

6
4

3
2

8
5

1
9

6
8

9
1

7
5

0
4

9
8

3
0

4
0

1
0

4
8

5
7

6

y
:

ti
m

e
 [

µ
s]

OpenMPI async

OpenMPI sync

POP-C++ async

POP-C++ sync

x: # of Bytes

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

29 Report Schrag Manuel

5.2. Obtained results

To keep the charts more readable and lighter, the differences between prediction and measurement are

discussed in section 0. The current section compares the different test scenarios ran on the cluster.

5.2.1. Latency

Let us check if the estimated latency corresponds to the reality. To do this, the test program sends very

small messages.

Figure 19 Test in range of single bytes

The circled area is not taken into consideration because of the “warmup” side effect (see section 0). All

the other values correspond to the prediction. It is already visible that the asynchronous programs in

both technologies provide better results in terms of latency (Figure 19). Explanations about that effect

below:

For POP-C++: The reason resides in the different signatures (invocation semantics, parameters) of the

principal methods used for the measurement (see section 0). A header of each input and output

parameter has to be serialized in a buffer belonging to the POP-C++ runtime before sending or receiving

data. In the synchronous version, more of those operations have to be done (more parameters) on local

and remote objects and each takes an amount of time which is in the range of 1-5µs. Unfortunately I

didn’t have the possibility to modify the POP-C++ runtime on the cluster to measure the exact time, but

could only do the test on my notebook.

For OpenMPI: The synchronous program uses calls to MPI_Wait to synchronize with the posted non-

blocking receives. Additionally to that, the non-initiating process has to invoke routines to know the

message size, source and tag before it is able to return the same message type to the initiator.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

y
:

ti
m

e
 [

µ
s]

OpenMPI async

OpenMPI sync

POP-C++ async

POP-C++ sync

x: # of bytes

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg

30 Report

5.2.2. Data sending

On the chart below (Figure 20), the circled areas are considered as victims of either the “warmup” side

effect (see section 0) or of operating system

Figure

Asynchronous: Asynchronous programs show

Only the OpenMPI graph seems to

continues.

Synchronous: The synchronous versions are linear as well in a global view. But there

downs in the graphs. The only explanation I can find is the window size problematic related to the TCP

protocol. We will see if the next measurement shows similar behavior.

0

10

20

30

40

50

60

70

80

90

y
:

ti
m

e
 [

µ
s]

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

Schrag Manuel

, the circled areas are considered as victims of either the “warmup” side

operating system and network related perturbations.

Figure 20 Messages of 0 to 1KB in increments of 64B

programs show a strictly linear behavior, which corresponds

seems to become steeper at its end. We will see in the next test, if this trend

The synchronous versions are linear as well in a global view. But there

The only explanation I can find is the window size problematic related to the TCP

protocol. We will see if the next measurement shows similar behavior.

x: # of bytes

C++ for HPC 2007

Schrag Manuel

, the circled areas are considered as victims of either the “warmup” side

orresponds to theory.

the next test, if this trend

The synchronous versions are linear as well in a global view. But there are more ups and

The only explanation I can find is the window size problematic related to the TCP

OpenMPI async

OpenMPI sync

POP-C++ async

POP-C++ sync

x: # of bytes

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg

31 Report

Figure 21

The circled area is considered as a victim of OS noise

Asynchronous: In fact, the trend observed in the preceding test continues in the current one

For messages <1KB, OpenMPI was faster than POP

But we can see that the two graphs

Synchronous: The areas of abnormal behavior in those two

x-axis and thus independent from the technology.

result always looks like that. The reason must lie in the

has to regulate the data flow. Window size decreases at every reception of a message and once it is too

small to receive another message (not enough space in the reception buffer), ad

packets are circulating between sender and receiver to inform each other about the situation.

Depending on how the message size matches with the window size available during the communication

process the number of those packets

of these jumps appears. The strange thing is that the asynchronous versions don’t show that jump.

Bidirectional communication in the synchronous versions could be the source of this behavior. It would

be interesting to see, if the test programs provide the same results on another cluster.

0

20

40

60

80

100

120

140

160

180

200

1024 2048 3072 4096

y
:

ti
m

e
 [

µ
s]

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

Schrag Manuel

21 Messages of 1KB to 10KB in increments of 1KB

The circled area is considered as a victim of OS noise or other perturbations.

In fact, the trend observed in the preceding test continues in the current one

For messages <1KB, OpenMPI was faster than POP-C++ and between 1-10KB the opposite is the case.

 stay close to each other. The difference is always smaller t

The areas of abnormal behavior in those two slopes are exactly at the same

independent from the technology. I repeated this test several times to be sure that the

The reason must lie in the underlying transporting protocol (

has to regulate the data flow. Window size decreases at every reception of a message and once it is too

small to receive another message (not enough space in the reception buffer), ad

packets are circulating between sender and receiver to inform each other about the situation.

Depending on how the message size matches with the window size available during the communication

he number of those packets can vary. When the same test program runs over Inf

The strange thing is that the asynchronous versions don’t show that jump.

Bidirectional communication in the synchronous versions could be the source of this behavior. It would

e interesting to see, if the test programs provide the same results on another cluster.

4096 5120 6144 7168 8192 9216 10240

C++ for HPC 2007

Schrag Manuel

In fact, the trend observed in the preceding test continues in the current one (Figure 21).

10KB the opposite is the case.

stay close to each other. The difference is always smaller than 3µs.

are exactly at the same places on the

I repeated this test several times to be sure that the

transporting protocol (TCP), which

has to regulate the data flow. Window size decreases at every reception of a message and once it is too

small to receive another message (not enough space in the reception buffer), additional TCP data

packets are circulating between sender and receiver to inform each other about the situation.

Depending on how the message size matches with the window size available during the communication

When the same test program runs over InfiniBand, none

The strange thing is that the asynchronous versions don’t show that jump.

Bidirectional communication in the synchronous versions could be the source of this behavior. It would

e interesting to see, if the test programs provide the same results on another cluster.

OpenMPI async

OpenMPI sync

POP-C++ async

POP-C++ sync

x: # of bytes

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

32 Report Schrag Manuel

Figure 22 Messages of 10KB to 100KB in increments of 10KB

The bigger the messages are, the more we can see the linear behavior in the chart.

Between 60 and 70KB a jump can be observed for OpenMPI programs (Figure 22). This is due to the

Eager protocol boundary fixed to 64KB for OpenMPI on the cluster (see section 3.1.2). For bigger

messages, OpenMPI uses the Rendez-vous protocol which performs a “handshake” before the message

is communicated. The jump is bigger in the asynchronous version. That can be explained with the

different routines which are used to send the data (ISend, RSend; see section 0).

Test program Standard deviation [MB/s]

OpenMPI asynchronous 9.8

OpenMPI synchronous 5.9

POP-C ++ asynchronous 0.4

POP-C++ synchronous 4.8

Table 6 Standard deviation for messages of 10KB to 100KB

In the table above (Table 6), the standard deviation of the bandwidth used for all four test programs is

listed. It is bigger for OpenMPI programs in this range of messages. This is due to the protocol change at

64KB. POP-C++ async provides almost perfectly linear results.

0

200

400

600

800

1000

1200

y
:

ti
m

e
 [

µ
s]

OpenMPI async

OpenMPI sync

POP-C++ async

POP-C++ sync

x: # of bytes

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

33 Report Schrag Manuel

Figure 23 Messages of 0 to 1MB in increments of 64KB

In a more distant point of view, OpenMPI async, OpenMPI sync and POP-C++ async are “playing” on the

same level. Unlike the prediction, the synchronous OpenMPI program corresponding graph is shallower.

Only POP-C++ sync loses performance by increasing the message length (Figure 23). This indicates that

the mechanism for output parameters in POP-C++ might be not optimally implemented. I can’t find

another reason, because the conditions for the communication of the data itself are identical as they are

for the asynchronous version. It could be the thread, responsible to return the value, which stays longer

in an inactive state depending upon the size of the returned parameter.

I added another line on the chart to show once the performances of OpenMPI when it’s running over

InfiniBand. The bandwidth used in this test is more than doubled compared to OpenMPI over TCP.

0

2000

4000

6000

8000

10000

12000

14000

0

6
5

5
3

6

1
3

1
0

7
2

1
9

6
6

0
8

2
6

2
1

4
4

3
2

7
6

8
0

3
9

3
2

1
6

4
5

8
7

5
2

5
2

4
2

8
8

5
8

9
8

2
4

6
5

5
3

6
0

7
2

0
8

9
6

7
8

6
4

3
2

8
5

1
9

6
8

9
1

7
5

0
4

9
8

3
0

4
0

1
0

4
8

5
7

6

y
:

ti
m

e
 [

µ
s]

OpenMPI async

OpenMPI sync

POP-C++ async

POP-C++ sync

OpenMPI sync (InfiniBand)

x: # of bytes

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

34 Report Schrag Manuel

5.2.3. Measurement vs. prediction

5.2.3.1. OpenMPI asynchronous

The results obtained in the measurements globally correspond to the calculated prediction. Differences

can be observed when OpenMPI changes the protocol from Eager to Rendez-vous (Figure 22). At this

point a temporary performance decrease of up to 100µs shows up. The chart below shows the global

behavior of prediction and measurement (Figure 24).

Figure 24 Global differences between prediction and measurement in OpenMPI async

5.2.3.2. OpenMPI synchronous

The prediction was too pessimistic for big messages; they use more bandwidth than expected (Figure

25). However small messages, (<50KB) do not use the expected bandwidth and end up slower than in

the prediction. This is also the range where we can observe the most irregularities due to the TCP

protocol (Figure 21).

Figure 25 Global differences between prediction and measurement in OpenMPI sync

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

y
:

ti
m

e
 [

µ
s]

Prediction

Measurement

x: # of bytes

0

2000

4000

6000

8000

10000

12000

y
:

ti
m

e
 [

µ
s]

Prediction

Measurement

x: # of bytes

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

35 Report Schrag Manuel

5.2.3.3. POP-C++ asynchronous

The prediction of this test scenario was too optimistic for big messages (Figure 26). Like mentioned in

section 0 the estimated latency is too large and thus I used also a too large bandwidth to make the

prediction.

Figure 26 Global differences between prediction and measurement in POP-C++ async

5.2.3.4. POP-C++ synchronous

This test scenario shows a similar behavior as the synchronous OpenMPI program for messages smaller

than 100KB. But unlike in that test, performances in terms of bandwidth are not increasing with the

message size but are decreasing (Figure 27) and thus this scenario loses performances compared to all

other scenarios (Figure 28).

Figure 27 Bandwidth decrease in POP-C++ sync

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

y
:

ti
m

e
 [

µ
s]

Prediction

Measurement

x: # of bytes

75

80

85

90

95

100

y
:

ti
m

e
 [

µ
s]

POP-C++ sync

of Bytes

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

36 Report Schrag Manuel

Figure 28 Global differences between prediction and measurement in POP-C++ sync

5.2.4. Including unconcerned processes/objects

The test programs were implemented in a manner to verify if other processes/objects included in the

program could disturb the point-to-point communication between the two concerned

processes/objects. They only consume a message in each iteration but on the outside of the actual

measurement. But as expected, this is not the case for all four test programs. These measurements

showed the same performances as the ones with only 2 processes/objects.

6. Conclusion

This chapter contains an explanation of the encountered problems, the final result of the tests and a

personal conclusion.

6.1. Encountered problems

6.1.1. Starting the “SXXparoc” service on computing nodes

When the system administrator of the Phoenix cluster tried to startup the SXXparoc service on the

computing nodes with an automatic startup script, it stayed stuck on every node. He had to start the

service on each node manually. On a small cluster like phoenix that is not a big deal. But on bigger

clusters with thousands of nodes it would be nearly impossible.

We managed to run the script without blocking by using the –f flag on the ssh command line. But

another problem still persists. Once the script has finished, the ssh processes for every node still run in

the background although they are supposed to disappear.

0

2000

4000

6000

8000

10000

12000

14000

0

6
5

5
3

6

1
3

1
0

7
2

1
9

6
6

0
8

2
6

2
1

4
4

3
2

7
6

8
0

3
9

3
2

1
6

4
5

8
7

5
2

5
2

4
2

8
8

5
8

9
8

2
4

6
5

5
3

6
0

7
2

0
8

9
6

7
8

6
4

3
2

8
5

1
9

6
8

9
1

7
5

0
4

9
8

3
0

4
0

1
0

4
8

5
7

6

y
:

ti
m

e
 [

µ
s]

Prediction

Measurement

x: # of bytes

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

37 Report Schrag Manuel

6.1.2. ssh: Connection refused

During the tests on the cluster, a SSH error showed up when the application is trying to create objects

without the job manager but by using the object descriptor od.url. The problem was that POP-C++ by

default uses RSH to use remote execution. To use SSH, the environment variable PAROC_RSH has to be

exported to the SSH location before starting the SXXparoc service.

For example with bash shell:

export PAROC_RSH=/usr/bin/ssh

6.1.3. Cluster access and disturbed measurements

The Phoenix cluster is used for benchmarking by other people of the computer science department at

the UNM. This is why the time to access it is limited for everyone. When something went wrong during a

measurement (Table 7) the time to wait for the next access was 1-3 days.

Size [Bytes] Minimum [µs] Average [µs] Maximum [µs]

10240 177.5 202.04 101204.99

20480 256.9 301.93 104022.03

30720 353.93 358.32 101346.97

40960 451.09 498.99 103460.07

51200 537.04 589.89 102808

61440 629.54 710.83 103517.53

71680 781.54 799.1 20708.44

81920 877.02 886.66 1651.53

92160 954.03 1050.44 103341.1

102400 1049.4 1063.81 1914.02

Table 7 Disturbed measurement on the cluster

6.2. POP-C++ vs. MPI

The artificial ping-pong test showed that POP-C++ can reach the same performances as OpenMPI for

data sending. As the latency is almost the double for POP-C++, it is slower for messages smaller than 1KB

where latency has more weight on the result. As already discussed, the POP-C++ test program seems to

include more CPU cycles into the measurement than the MPI test program, which falsifies the result for

latency and small messages a lot. When the message size gets bigger, POP-C++ is even faster than

OpenMPI. But, as mentioned earlier, OpenMPI is not optimally implemented to use TCP and Ethernet.

This is because faster local networks like InfiniBand or Myrinet are more commonly used on HPC-

clusters and OpenMPI is more sophisticated for those technologies.

The table below (Table 8) summarizes performance comparisons between POP-C++ and MPI in all

ranges of data length to pass from one process/object to another. In my tests, POP-C++ was slower for

messages <10KB and shows better performances than OpenMPI for messages >10KB.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

38 Report Schrag Manuel

Range [Bytes] Perf. MPI [%] Perf. POP-C++ [%]

1-1024 100 68.27680637

1024-10240 100 96.0923761

10240-102400 100 107.9309088

131072-1048576 100 109.8135363

Table 8 Performances of POP-C++ vs. MPI

A delicate point in POP-C++ is the use of output parameters. As we could see in the synchronous tests,

the performances decreased by increasing the parameter size (Figure 27). The main difference of the

two POP-C++ test programs resides in the fact that the called method in the synchronous test returns a

value (output parameter). So the reason for the performance decrease has to be in the mechanism to

return a value to the caller.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

39 Report Schrag Manuel

Collective Communication in POP-C++

1. Introduction {common}

This part of the project consists in adding collective communication to POP-C++. POP-C++ already

provides a feature to use collective communication by using MPI underneath (see [4]). What we want to

do is adding collective communication independent from MPI. Collective communication means that

more than 2 entities are involved in a communication process (point to multipoint, multipoint to

multipoint).

My colleague Frédéric Barras and I took the decision that I try to embed collective communication by

modifying the POP-C++ parser. He will design and implement a version without modifying the parser,

but by adding a library providing collective communication functions.

The analysis of collective communication and the POP-C++ is presented in the next chapter.

2. Analysis

This chapter analyzes how to embed collective communication into the existing runtime of POP-C++. For

a better understanding, MPI collective communication is analyzed first.

2.1. Collective communication in MPI

Understanding point-to-point communication in MPI is recommended before reading this section (see

section 2.4 of the first part on page 10).

In parallel computing we can find communication models where more than 2 processes are involved at

the same time. The MPI standard specifies a collection of functions which are defined under the term

Collective communication and which correspond to such communication models. Often, one process is

distinguished from the others (by its rank) and is commonly called root (for 1-N / N-1 functions). But in

some functions, every process does the same (N-N functions).

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

40 Report Schrag Manuel

Method Description Visualization

Broadcast The root process sends identical data to any

other process of the same group.

Figure 29 MPI broadcast [7]

Scatter root sends different data of same size to any

other process of the same group.

Figure 30 MPI Scatter [7]

Gather root gathers the data from all involved

processes and places them, sorted by rank,

into its reception buffer.

Figure 31 MPI Gather [7]

Reduce The main idea is to do the same as the

Gather operation. But before storing every

single received piece into the reception

buffer, a Boolean or arithmetic operation is

performed to combine the data. And only

the result of this operation is stored in the

reception buffer of root.
Figure 32 MPI Reduce [7]

AllGather No root process is present in this function. It

corresponds to a multi broadcast where

every process sends its data to every other

process of the group. The final reception

buffer of those will be identical.

Figure 33 MPI Allgather [7]

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

41 Report Schrag Manuel

All-to-All This is an N-N function and thus doesn’t

contain a root process. Process i sends the

kth block of its send buffer to process k,

which stores it in the ith block of its

reception buffer.

Figure 34 MPI All-to-All [7]

AllReduce N-N function with no root process. Multi

broadcast with following reduction

operation.

Figure 35 MPI Allreduce [7]

Table 9 Explanation and visualization of MPI collective communication functions

2.2. Collective communication in POP-C++

In the current version of POP-C++ it is possible to couple MPI code in a POP-C++ program by using a

special template class. The disadvantage in this approach is that we partially lose the object oriented

paradigm and introduce the message passing paradigm instead. Table 10 explains how collective

communication should be implemented to keep the OO paradigm. Circles represent parallel objects and

rectangles represent a data element.

Method Description Visualization

Broadcast The program invokes a method on the group by

passing data in parameters. This data is

communicated to all members of the group and is

identical for every one of them.

Scatter The program invokes a method on the group by

passing lists of data elements in parameters. Each

parameter is a list of data elements. The ith

element of this list is sent to the ith object in the

group, thus every one receives potentially different

data.

Parameter

Parameter

Figure 37 POP-C++ Scatter

Figure 36 POP-C++ Broadcast

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

42 Report Schrag Manuel

Gather For the invoked method on the group every

member returns one data element. The final result

on the caller’s side is a list of data elements.

Reduce The main idea is to do the same as the Gather

operation. But instead of storing every data

element separately, only the result of an

arithmetic or logic operation of these elements is

stored.

AllGather This operation corresponds to a multi broadcast

where every object of the group calls a method on

every other member i by passing the ith data

element of its list as a parameter. After the

operation, all objects contain the same list of data

elements (same order). The data element passed

by object i is at the ith position.

All-to-All Object i invokes a method on every object k by

passing the kth data element of its list as a

parameter. Object k stores the received data

element at the ith position of its list.

Before

After

Before

After

Result

Result

Figure 38 POP-C++ Gather

Figure 39 POP-C++ Reduce

Figure 40 POP-C++ Allgather

Figure 41 POP-C++ All-to-all

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

43 Report Schrag Manuel

AllReduce This operation corresponds to a multi broadcast

with following reduction operation.

Table 10 Explanation and visualization of POP-C++ collective communication functions

2.3. The POP-C++ parser

The POP-C++ parser is built with flex and bison. It is implemented as a finite state machine (for more

details on flex and bison, consult the online manuel [9]). bison is designated to process a file (see

example below) describing the grammar which the parsed files are supposed to respect. For example, a

class in C++ is constituted of its head declaration followed by its member list (attributes, methods)

between braces. Head declaration and member list declarations are described in another rule which

may contain again other sub rules. All these rules together are finally describing the finite state machine.

Every rule can start several actions which are coded in C/C++. After having processed this grammar file

with bison, a C/C++ source file is created which can parse the input following this grammar.

…

%token PARCLASS_KEYWORD CLASS_KEYWORD

…

class_declaration: class_head '{' member_list '}' ';'

{

 currentClass=NULL;

 insideClass=false;

}

;

class_head: class_key pure_class_decl base_spec

;

class_key: PARCLASS_KEYWORD ID

{

 insideClass=true;

 Class t;

 currentClass=t;

}

;

member_list: /*empty*/

| member_declaration member_list

| access_specifier ':' member_list

;

…

Before

After

Figure 42 POP-C++ Allreduce

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

44 Report Schrag Manuel

flex processes another file (see code below) to create a lexical analyzer (coded in C/C++) recognizing

tokens in the parsed files.

…

parclass { return PARCLASS_KEYWORD; };

class { return CLASS_KEYWORD; };

…

The lexical analyzer provides tokens to the parser which performs a certain action corresponding to the

delivered token in the current state and then updates the state machine. In the example above, the

token PARCLASS_KEYWORD is returned to the parser whenever the lexical analyzer encounters

“parclass” in the input. Processing this file with flex means creating a C/C++ source file doing the work

described above.

Once these C/C++ source files are created, they are compiled and linked together into the executable

parser. How POP-C++ source code is processed by this parser is illustrated in the figure below.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

45 Report Schrag Manuel

Figure 43 Vastly simplified functionality of the POP-C++ parser

When the POP-C++ parser is processing source files, it creates objects in memory representing

parameters, methods, classes etc. encountered during parsing. This is necessary to remember important

information (such as the name of a class, the type of a parameter, the return type of a method, …) which

is used later on to generate corresponding C++ code. This information is updated continuously during

the parsing process. The order of what’s created is not necessarily the one showed in Figure 43.

Parser Method ClassParamSourceFile ...

1 : parse()

2 : token

if (token=="class")

if(token=="method")

if(token=="parameter")

3 <<create>>

4

5 : read()

6

7 : updateInformation()

8 <<create>>

9

other tokens

10 : read()

11

12 : updateInformation()

13 <<create>>

14
15 : read()

16

17 : updateInformation()

18 <<create>>

19
20 : read()

21

22 : updateInformation()

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

46 Report Schrag Manuel

3. Design

The goal of this conceptual method of adding collective communication to POP-C++ is to consider the

object oriented programming paradigm the most possible. The design presented in the following

sections is unfortunately not implementable as a generic library (independent of the object type). It is

necessary to generate code dynamically at the compilation of an application. A group parser in charge of

this task (see section 3.4) must be included in the POP-C++ compilation process. But before discussing

the group parser, information about how collective communication is built into POP-C++ is described,

assuming that the necessary source code exists.

3.1. Group representation

It is necessary to specify what a group is in POP-C++ to define which objects a collective method

invocation will affect.

A group of objects is represented by a container knowing all the objects which are part of the group.

Let’s call this container POPGroup. Every member of a POPGroup is uniquely identified by its rank and all

objects are of the same type. Figure 44 shows the operations which are possible on a POPGroup

container. For explanations of every use case, read the Use case description sheets located on the CD

coming with this report.

Figure 44 Use case diagram to handle a group

As we can see, the container provides different functions to manage a group such as adding or removing

objects. To use collective communication on the group, the program has to get the stub of this type of

group (see pseudo-code below). The stub is to invoke type specific methods on the entire group. This

mechanism is used to explicitly make the difference between group management functions (add,

remove …) and collective communication (type specific method).

Program

Create/Add object(s)

Create a group

Remove object(s)Manage a group

Get size of group

Object

POPGroup container

Get rank of object

Merge groups

Get stub for collective communication

Invoke type specific method

<<extend>>

Empty group

Get member from rank

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

47 Report Schrag Manuel

POPGroup<Test> myTestGroup; // Create group of type Test

myTestGroup.add(objects); // Add objects to the group

myTestGroup.comm().helloWorld(); // helloWorld() is specified in class Test

3.2. Collective communication operations

The collective communication library of POP-C++ provides four basic operations which use all point to

multipoint communication:

• broadcast

• scatter

• gather

• reduce

Broadcast: The same data is passed to every group member. In this example, the group invokes

setMethod(3) on every member.

int param = 3;

myGroup.comm().setMethod(param); // Invokes setMethod on every member with parameter param

Scatter: Each remote object receives different data. The programmer specifies an array of parameters

which is passed to the group by indicating the array’s size.

int nb = 4; // Size of parameter array

int params[nb] = {1,2,3,4}; // Parameter array

myGroup.comm().setMethod(params, nb);// Invokes setMethod on first nb members by passing

 // one parameter from params array according to rank

In this example, the group would invoke setMethod(1) on member with rank 0, setMethod(2) on

member with rank 1 and so on. The group uses a circular procedure to invoke methods on members to

handle the case where the number of members doesn’t correspond to the size of the passed array. If

the array size is smaller than the number of members, not every member will be called. If the array size

is greater, some members will be called multiple times.

Group

Param Parameter

Group

Figure 45 Scatter operation in case of inequality of parameter size and group size

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

48 Report Schrag Manuel

Gather: This method returns an array of results which’s size corresponds to the number of group

members. The results are ordered according to the rank of the members.

int res = new int[myGroup.getSize()]; // Create the array to store results

myGroup.comm().getMethod(res); // Invoke getMethod on all group members

In this case, res[0] will contain the result returned by the member with rank 0.

Reduce: After implicitly doing a Gather, a reduce operation is executed on the array of results (min,

max, etc…) before returning the result.

int res; // Variable to store result

res=myGroup.comm().getMethod(POPGroup<type>::_MAX); // Invoke getMethod on all group members and

 // performs reduce operation MAX

In this example, res would contain the maximum value of the returned results of all members.

Figure 46 illustrates the above described operations in a more generic way.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

49 Report Schrag Manuel

Figure 46 Sequence diagram of use case, “Call type specific method”

3.3. Architecture

Figure 47 illustrates the architecture of the collective communication library. The template [8]

mechanism of C++ is used to implement the generic management methods. Another class contains type

specific methods used for collective communication. The classes T, stubT and the method comm() in the

POPGroup template returning a reference to a stubT instance are dynamic components in this

architecture. They depend on whatever class T contains, where T can be any imaginable C++ type. These

components must be generated during the POP-C++ compilation process.

local remote

 : program : template <class T> POPGroup Object1 Object2

1 : void := method(params)

2 : void := method(params)

3 : void := method(params)

4 : void := method(params [], nb:int)
5 : void := method(params [1])

6 : void := method(params [2])

Broadcast

Scatter

Gather

7 : void := method(res:type[])
8 : type [1] := method()

9

10 : type [2] := method()

11

12

Reduce

13 : type := method(operation)

14 : type [1] := method()

15

16 : type [2] := method()

17

18 : perform reduce operation()

19

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

50 Report Schrag Manuel

Figure 47 Architecture of the collective communication library

The main reason why group management methods are separated from the type specific methods is to

avoid method name conflicts. If they were placed in the same class it could be possible that the class

wouldn’t be accepted by the compiler. For example if code is generated from a class T containing the

method bool isEmpty(), the resulting class would contain two methods with exactly the same signature.

Separating them also decreases the risk of confusion for the programmer or somebody who reads the

source code using this library when method names are similar in the stub class and the POPGroup

container.

A simple program using collective communication would be implemented like the following example:

The main program: includes all needed libraries plus the POPGroup.h file which represents the group

container.

#include "example.ph"

#include "POPGroup.h"

int main(int argc, char **argv) {

POPGroup<Example> myGroup;

// POP-C++ program using collective communication (or not)

}

template <class T> POPGroup

-members: vector<T>
-size: int
-stub: *stubT

+isEmpty(): bool
+emptyGroup(): void
+add(o: T&): void
+add(t: T&): void
+createMembers(n: int): void
+getSize(): int
+getRank(o: T&): int
+getMember(rank: int): T&
+removeAt(rank: int): void
+remove(objects: *T, nb: int): void
+merge(g: POPGroup<T>&): void
+comm(): stubT&

program T

+class T specific attributes

+class T specific methods()

stubT

+class T specific methods generated by parser()

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

51 Report Schrag Manuel

The stub class: This class contains all the type specific methods. When a group container is created, an

object of the corresponding stub class is also instantiated. A reference to this instance is returned when

the main program calls the comm() method on the group container.

#include <vector>

using namespace std;

class _parocGroupExample

{

 vector<Example*> *members;

 int *size;

public:

 _parocGroupExample(vector<Example*> *mem, int *sz) {

 members=mem;

 size=sz;

 }

 //list of type specific methods for broadcast, scatter, gather and reduce

 …

};

The POPGroup container: Contains group management functions. To define the container for Example

objects the template class POPGroup is specialized. As there is no inheritance in templates, all the class

members must be redefined for every class used for collective communication. This is why the base

template doesn’t contain any members at all.

#include <vector>

using namespace std;

template <class U>

class POPGroup {

};

#include "_parocGroupExample.h"

template<>

class POPGroup<Example> {

 vector<Example*> members;

 vector<Example*>::iterator it;

 int size;

 _parocGroupExample *stub;

public:

 const static int _MAX=0;

 const static int _MIN=1;

 const static int _OR=2;

 POPGroup() {

 size=0;

 stub = new _parocGroupInteger(&members, &size);

 }

 bool isEmpty() { }

 void emptyGroup() { }

 void add(Example &o) { }

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

52 Report Schrag Manuel

 void add(Example *o, int nb) { }

 void createMembers(int nb) { }

 void removeAt(int rank) { }

 void remove(Example *o, int nb) { }

 int getRank(Example &o) { }

 int getSize() const { }

 Example &getMember(int rank) { }

 void merge(POPGroup<Example> &g) { }

 _parocGroupExample &comm() { }

};

The only thing the programmer has to take care about is to include the POPGroup.h file in the main

program.

3.4. Creating a “group parser”

The POP-C++ compiler parocc executes 3 different programs: the C++ preprocessor, the POP-C++ parser

and the C/C++ compiler. They are executed in the order they were mentioned. As we’ve seen in section

3.3 the programmer has to include the POPGroup.h file to compile the application using collective

communication. The problem when creating this file directly in the POP-C++ parser is that it won’t exist

at the moment when the C++ preprocessor does its work. In consequence, the file generation has to be

made before.

Considering the issue mentioned above, an additional program which accomplishes the requested tasks

must be implemented. Let’s call it group parser. It generates the files containing the source code for the

POPGroup container(s) and the stub classes. This source code has to be written in specific files

respecting the following convention:

• The POPGroup container for every class using collective communication in the application is

written to a file called POPGroup.h.

• Source code for the stub class for every class using collective communication in the application

is written to a file called _parocGroupT.h wher T has to be replaced by the name of the class

Even if the group parser can be seen as an independent program it can be invoked implicitly when

compiling a POP-C++ application with parocc. The fact that the application is using collective

communication can be told to the POP-C++ compiler by adding the optional –group command line

argument.

parocc –group –c example.ph example.cc

The above command generates automatically the collective communication source code for all class

specifications in the file example.ph. Consider the example below to see how the group parser

translates a header file into a stub class:

parclass Example {

 public:

 void method_0();

 void method_1(int n);

 int method_2();

 int method_3(int n);

};

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

53 Report Schrag Manuel

The group parser generates the code below from the input file above.

class _parocGroupExample {

…

public:

//generated methods for method_0

 void method_0(); // Implements broadcast

//generated methods for method_1

 void method_1(int n); // Implements broadcast

 void method_1(int *n, int nb); // Implements scatter

//generated methods for method_2

 void method_2(int res[]); // Implements gather

 int method_2(int op); // Implements reduce

//generated methods of method_3

 void method_3(int n, int res[]); // Implements broadcast and gather

 void method_3(int *n, int nb, int res[]); // Implements scatter and gather

 int method_3(int n, int op); // Implements broadcast and reduce

 int method_3(int *n, int nb, int op); // Implements scatter and reduce

};

• Normal parameter

• Array of parameters for Scatter operation

• Output parameter for Gather operation

• Type of Reduce operation to perform

• Size of parameter list for scatter operation

If the programmer wants to collect results in an array by doing a gather operation, the array has to be

passed as a parameter to the called method on the group (output parameter). To perform a reduce

operation on this array before returning the result, an additional parameter is needed to indicate what

operation to perform (max, min, etc.). The return and parameter types are recognized during the

parsing process of course and thus not limited to a range of specific types.

Only public methods are translated into the stub. All the other methods are not considered during the

parsing process, because they are not supposed to be called from the outside of the class.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

54 Report Schrag Manuel

Table 11 recapitulates the generation of stub methods having a .ph as the input.

Method in .ph file Generated methods in stub

void method() /* broadcast : call the method on every member */

void method()

void method(int n, int m, …) /* broadcast : call the method with same parameters (n,m,…) on every member */

void method(int n, int m, …)

/* scatter : call the method with different parameters (n[i],m[i],…) on every member by

specifying the size of the array(s) (size). Default is size of group. */

void method(int *n, int *m, …, int size=getSize())

int method() /* gather : call the method on every member. Gather the return values in an array (res[])*/

void method(int res[])

/* reduce : call the method on every member. Return result of reduce operation passed as a

parameter (op) */

int method(char *op)

int method(int n, int m, …) /* broadcast and gather : call the method with same parameters (n,m,…) on every member.

Gather results in an array (res[]) */

void method(int n, int m, …, int res[])

/* scatter and gather: call the method with different parameters (n[i],m[i],…) on every

member by specifying the size of the array(s) (size). Default is size of group. Gather the

return values in an array (res[]) */

void method(int *n, int *m, …, int res[], int size=getSize())

/* broadcast and reduce : call the method with same parameters (n,m,…) on every member.

Return result of reduce operation passed as a parameter (op) */

int method(int n, int m, …, char *op)

/* scatter and reduce : call the method with different parameters (n[i],m[i],…) on every

member by specifying the size of the array(s) (size). Return result of reduce operation

passed as a parameter (op) */

int method(int *n, int *m, …, int nb=getSize(), char *op)

Table 11 How the POP-C++ parser generates methods from .ph file

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

55 Report Schrag Manuel

3.5. Handling a group of remote objects for N-N communication

Table 10 in section 2.2 also presents N-N functions (All-to-all, Allgather, Allreduce) in POP-C++. The

difference compared to 1-N/N-1 functions is mainly that there is no entity which initiates a method call

on all members or reassembles the return values. For 1-N/N-1 communication, this entity would be the

main program using the group library. This makes it difficult to find a common denominator for N-N

functions and object oriented programming. It would need major changes in the POP-C++ runtime to

handle this type of collective communication properly and efficient. Therefore, this project contains

design and implementation for 1-N/N-1 functions only.

4. Implementation

This chapter describes how the group parser has been implemented to generate source code files

needed to use collective communication in a POP-C++ application. In the design section, no difference

has been made between parallel classes and usual C++ classes. The mechanism is designed for both of

them. In the implementation, only parclasses are mentioned because the group parser doesn’t take into

consideration C++ classes (see also section 6).

4.1. Code models

Code model files are used by the group parser to generate container(s) and stub classes by reading

these files and writing their content to the output file POPGroup.h.

The first code model (section 3.1) specifies the base template class POPGroup, which is in fact an empty

class. It is only defined to use a common syntax for any type of created groups:

POPGroup<Example> myGroupExample;

POPGroup<Test> myGroupTest;

Another code model (section 3.2) specifies the specialized template class POPGroup<T> for every type.

The special character T is replaced by the name of the current parclass when writing to the output file

(POPGroup.h) to generate the final POPGroup container for this parclass which allows the programmer

to invoke management function on the group.

Example o1;

myGroupExample.add(o1);

This code model also contains the implementation of the group management functions.

4.2. Group parser

The goal of this parser is parsing files to find parclasses and generate a stub class corresponding to the

public methods it encounters inside these parclasses. It is built on the same grammar as the POP-C++

parser and uses the same technologies to generate the C/C++ source files (flex and bison).

Essentially, the parser does the following work (see grammar extract below): it searches the input for

the keyword parclass followed by the parclass’ name. When this situation arrives, a new Class object is

created in memory, representing the parclass by its name and id. After this, the parser calls a method to

generate the POPGroup container for this class. All that is needed to generate this container is the name

of the parclass. One or both of the following scenarios can happen:

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

56 Report Schrag Manuel

• The current parclass is the first encountered in the parsing process (id=0). Generate the base

template class POPGroup by using the corresponding code model in the output file POPGroup.h.

This file is created if it doesn’t exist and replaced if it does.

• The current parclass is the first or not the first encountered in the parsing process (id>=0).

Generate the specialized template class POPGroup<T> by using the corresponding code model

and write to the output file POPGroup.h. During the writing process, T is replaced by the

parclass’ name. The generated code is appended to the output file which has been created by

the scenario above.

/*

Parallel class declaration

*/

class_declaration: class_head '{' member_list '}' ';'

{

 currentClass->~Class();

 currentClass=NULL;

 insideClass=false;

}

;

class_head: class_key pure_class_decl base_spec

{

 accessmodifier=PUBLIC;

}

;

class_key: PARCLASS_KEYWORD ID

{

 insideClass=true;

 char *clname=GetToken($2);

 Class *t=new Class(clname, crtClassID++);

 currentClass=t;

 currentClass->GenerateGroupTpl();

}

;

The first part of the file containing the stub class (_parocGroupExample.h) for this parclass is also

generated at this point because it depends only on its name (in this case “Example”).

#include <vector>

using namespace std;

class _parocGroupExample

{

 vector<Example*> *members;

 int *size;

public:

 _parocGroupExample(vector<Example*> *mem, int *sz) {

 members=mem;

 size=sz;

 }

After this step, the parser is in the state of being in a parclass definition. It is now expecting the “{“

character followed by a list of members (attributes and methods). This member list is described as

follows in the grammar (simplified):

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

57 Report Schrag Manuel

/*

Parallel class member declaration

*/

member_list: /*empty*/

| member_declaration member_list

| access_specifier ':' member_list

;

member_declaration: function_definition ';'

| attribute_definition ';'

;

/*

Method declaration

*/

function_definition: constructor_definition

| destructor_definition

| method_definition pure_virtual_decl

{ method->GenerateClient();

}

;

pure_virtual_decl: /*empty*/

| '=' INTEGER

{ method->SetPureVirtual();

}

;

method_definition: decl_specifier pointer_specifier ref_specifier function_name '('

argument_declaration ')'

| fct_specifier decl_specifier pointer_specifier ref_specifier function_name '('

argument_declaration ')'

| '[' marshal_opt_list ']' decl_specifier pointer_specifier ref_specifier function_name '('

argument_declaration ')'

| fct_specifier '[' marshal_opt_list ']' decl_specifier pointer_specifier ref_specifier

function_name '(' argument_declaration ')'

;

function_name: ID

{

 method=new Method(currentClass,accessmodifier);

 currentClass->AddMember(method);

 strcpy(method->name,GetToken($1));

 returntype=currenttype;

 currenttype=NULL;

}

;

/*

METHOD ARGUMENT DECLARATIONS

 */

argument_declaration: /*empty*/

| argument_list;

argument_list: arg_declaration

| arg_declaration ',' argument_list

;

arg_declaration: marshal_decl cv_qualifier decl_specifier pointer_specifier ref_specifier

argument_name array_declarator arg_default_value

{

 Param *t=method->AddNewParam();

}

;

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

58 Report Schrag Manuel

Attributes are ignored by the group parser. The only interesting members are public, non pure virtual

methods. Once the method name is known, a new Method object is created in memory, representing

the method by its name and the parclass it belongs to. When all the parameters have been parsed and

added to the list of parameters in the Method object, all information is gathered to generate the

corresponding collective method(s) (see Table 11) in the stub class (_parocGroupT.h file). At the

moment when all members have been parsed, the only object still in memory is the current Class object.

By deleting it, the file generation for this parclass completes by adding the terminating “};” characters to

the end of the output file.

4.2.1. Including the group parser in the POP-C++ compilation process

As described in section 3.4 the group parser should be called implicitly during the compilation of a POP-

C++ application when the optional –group command line argument is specified. When this is the case,

parocc scans the command line for files with the extension .ph and collects their names in an array.

After this it invokes the group parser followed by the list of .ph file names stored in the array. Every .ph

file may contain multiple parclasse declarations. All this parclasses are parsed to generate the

corresponding containers and stubs (Figure 48).

Afterwards the normal POP-C++ compilation process takes place where parocc calls the C++

preprocessor, then the POP-C++ parser and at the end the C++ compiler.

parocc args[]

scan for .ph file(s) �

ph_file_list

if args[x]=-group

grpparser ph_file_list

generation of

conatainers and stubs

C++ preprocessor

POP-C++ parser

C++ compiler

else

Figure 48 Integration of the group parser in the POP-C++ compilation process

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

59 Report Schrag Manuel

4.3. Where to find the source code for the group parser?

 The group parser is entirely integrated in a modified distribution of POP-C++ verison 1.2. This

distribution contains the usual POP-C++ runtime plus all the necessary sources to build the group parser.

All these additional sources have been added with the GNU development tools autoconf and automake

to keep the installation process identical to the unmodified distribution.

Three files can are in the popc-1.2/include directory:

• parocGroup.h: code model (section 3.1)

• parocGroupSpec.h: code model (section 3.2)

• RankException.h: Defines a class to handle the rank out of bounds exception in group

management functions (section 3.3)

The popc-1.2/grpparser directory contains all the files that are necessary to create the group parser

executable.

Two test example programs using collective communication can be found in the popc-1.2/test directory.

4.4. Limitations and recommendations

4.4.1. Installing the distribution

During the installation process of the distribution you have to build libraries, objects etc. from the

source code with make. This step also compiles the test programs of the distribution which use the

group parser to generate needed files. When another version of POP-C++ is already installed the

environment variable PAROC_LOCATION may be defined in the current context. This leads to a

compilation error in the make process, because the group parser cannot be found at this location. It is

therefore recommended to install this distribution in a context where this environment variable is not

defined.

4.4.2. Split application in logical parts

To avoid compilation problems, a POP-C++ application using collective communication should be split in

at least 3 parts. One part is the main program including POPGroup.h. The .ph file(s) containing the

parclass declaration(s) represent the second part. Part 3 is consists in the implementation of the

methods defined in the .ph header files.

4.4.3. Remote objects as parameters

In POP-C++ it is possible to pass references to remote objects as parameters in a method call. This is true

for collective operations also. But it is dangerous to pass a reference of a remote object which is itself a

member of the group. This operation can cause a dead-lock situation like illustrated in the example

below with the parclass Integer:

parclass Integer {

public:

 Integer();

 Integer(int wanted, int minp) @{ power= wanted ?: minp;};

 Integer(paroc_string machine) @{ od.url(machine);};

 ~Integer();

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

60 Report Schrag Manuel

 seq async void Set(int val);

 conc int Get();

 mutex void Add(Integer &o);

 async conc void Wait(int t);

 conc int Sum([in] int x[5000]);

private:

 int data;

};

The interesting methods to explain the problematic are highlighted. When the method Add(Integer &o)

is invoked,

Integer o1;

o1.Add(o1);

the following code is executed on the remote object o1:

void Integer::Add(Integer &other)

{

 data+=other.Get();

}

A dead-lock situation occurs. The invocation o1.Add(o1) implicitly calls the Get() method. But since

Add(Integer &o) is declared mutex it prevents the Get() method to be executed on this object.

Such situations will not be detected during the POP-C++ compilation process. Therefore the error will

show up at runtime only. It is up to the programmer to see whether it is safe to use this mechanism or

not depending on the situation.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

61 Report Schrag Manuel

5. Tests

The two test programs included in the implemented POP-C++ distribution serve as basis to test the

functionality of collective communication in a POP-C++ application. Especially the integer test program

explores all group management functions and contains 10 type specific methods on which collective

communication is tested. The main program tests all types of collective communication operations.

parclass Integer

{

public:

Integer() @{ od.power(50,20);};

Integer(int wanted, int minp) @{ power= wanted ?: minp;};

 Integer(paroc_string machine) @{ od.url(machine);};

 ~Integer();

 seq async void Set(int val);

 conc int Get();

 mutex void Add(Integer &other);

 mutex void Add([in] Integer &o1, [in] Integer &o2);

 async conc void Wait([in, size=1] int *t);

 conc int Sum([in] int x[5000]);

private:

 int data;

 classuid(1000);

};

6. Future work

6.1. Parse C++ class declarations

At the actual state, only .ph files are parsed to find parclass declarations. The parser could be modified

to parse sequential class declarations to generate the same code as it does for parclasses. The question

is if it is useful to create groups of sequential objects which are all executed on the local machine.

6.2. Clean source code

The group parser has been developed from the POP-C++ parser. At the end of the project, I didn’t have

enough time to clean the code completely. This is why there are still pieces of code which are useless for

the group parser left in the source code.

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

62 Report Schrag Manuel

6.3. Sophisticated algorithms for group method invocations

Group invocations are implemented using a very simple algorithm. The group goes through every

member within a loop and calls the requested method on it by respecting the POP-C++ semantics. It

could be a big interest to find more sophisticated algorithms to improve performances of the collective

communication mechanism in POP-C++. For example: use a binary tree structure for broadcast and

reduce operations to propagate data to the group members like illustrated in Figure 49.

Other structures than binary trees are imaginable (e.g. mesh).

Another performance issue is that a group invocation respects the POP-C++ method invocation

semantics. The issue is negligibly for asynchronous calls, but synchronous calls force the caller to stay

blocked at the point where the invocation takes place and no other work is done during this waiting

time. Creating a thread which waits for the group invocation to finish could solve this problem (Error!

Reference source not found.). The main thread could continue to do other work and check at some

point if the before created thread has completed. If this is the case, it can get the results from the

temporary thread and the kill it.

Broadcast Reduce

Broadcast

method call

(and data)

1. Broadcast

method call

(and data)

2. Reduce

results

Figure 49 Binary tree structure for broadcast and reduce

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

63 Report Schrag Manuel

7. Conclusion

The entire implementation of the group parser is embedded in a distribution of the most recent POP-

C++ version (1.2). This makes it easy to install and test collective communication operations because the

installation procedure is exactly the same as in usual distributions of POP-C++. The runtime has not been

affected by the changes; all the additional work to use collective communication is done during the

compilation of an application.

Main thread

group invocation

check if finished

check if finished

get results

kill

Temp. thread

Objects

Figure 50 Asynchronous group calls with temporary thread

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

64 Report Schrag Manuel

General conclusion

1. Personal conclusion

The first part of the project gave me a good introduction to HPC related problems. A lot of different

components have to be considered when doing benchmarks on a cluster (hardware, protocol, OS,

technology, exclusive access etc.). It was useful to have the possibility to work on a cluster with some

assistance from more experienced people in this domain.

It was very interesting to implement collective communication for POP-C++ by modifying the POP-C++

compilation process. I could study the functionality of the parser which allowed me to better

understand the powerful tools flex and bison (lex and yacc). It was a big challenge, because the source

code of the POP-C++ compiler (including the parser) consists of several thousands of lines. But once I

achieved the global understanding, discovering more and more details was very enriching for my

education. Also embedding the group parser into an existing distribution of POP-C++ helped me to

understand how autoconf and automake can ease the development of a big application.

2. Thanks

We’d like to thank all the persons who supported us during this project:

The responsible professors at the College of engineering and architecture in Fribourg:

• Pierre Kuonen: for his advices during the entire project and for giving us the possibility to

accomplish it in Albuquerque

• François Kilchoer: for his advices during the entire project and for the English corrections in the

report

• Jean-François Roche: for his advices during the entire project

• Guilherme Peretti Pezzi: for his advices to solve POP-C++ issues

The responsible externs:

• Thuan-Anh Nguyen: for his help to solve POP-C++ issues on the cluster and for providing the

lexer and grammar source files to study the POP-C++ parser

• Barney Maccabe: for giving us the possibility to do this project in Albuquerque

• Rolf Riesen: for his explanations about MPI and collective communication.

• The developers of the reflpcc library: for responding to our questions via e-mail

o Tharaka Devadithya (Indiana University, USA)

o Kenneth Chiu (SUNY Binghamton, USA)

o Wei Lu (Indiana University, USA)

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

65 Report Schrag Manuel

Appendix

1. Unrealized designs

This section contains short descriptions of designs which were discussed during the project but not

developed. They are mentioned here because they may give ideas of how the current implementation

could be modified to improve it.

1.1. Syntax for collective communication

The presented design in section 3 on page 46 is one among other ideas that were discussed between me

and the responsible persons of this project.

1.1.1. Create a stub for every collective communication operation

This design previews to generate for every parclass a stub class for every collective communication

operation (broadcast, scatter, gather and reduce), thus 4 for every parclass. In this design, the

programmer wouldn’t be allowed to implement methods which have a return value and parameters.

They have to be either outgoing methods or incoming methods.

myGroup.broadcast().setValue(param);

myGroup.scatter().setValue(param[]);

res[] = myGroup.gather().getValue(); //myGroup.gather().getValue(res);

res = myGroup.reduce().getValue(operation);

This design also wants to collect results from the gather operation by using a different syntax. The

gather operation should return an array which is not possible in this case because an array is only a

pointer in C and the size of the array is not known. To implement that syntax the parser would have to

look out for this kind of situation in the programmer’s source code and replace the highlighted code by

the one in comment on the same line. But it is not the philosophy of POP-C++ to change the

programmer’s source code.

1.1.2. Differentiate incoming and outgoing methods

In this design, the programmer is forced to distinguish incoming and outgoing messages. Two stubs per

parclass would have to be generated to do that. But this restriction of allowing only “one-way” methods

in parallel classes wouldn’t match with the POP-C++ programming language.

myGroup.out().setValue(param); // broadcast

myGroup.out().setValue(param[]); // scatter

myGroup.in().getValue(res[]); // gather

myGroup.in().getValue(operation); // reduce

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

66 Report Schrag Manuel

2. CD structure

Everything concerning the project can be found on the CD coming with this report. There are two folders

at the root directory. The folder Barras contains the part of my colleague Frédéric Barras and the folder

Schrag contains everything discussed in this report.

The final report and 3 subfolders are located directly under

Schrag.

Subfolder MPIvsPOPC (first part of the project): Contains

the sources of the test programs and the UML file including

sequence diagrams of the design of these programs.

Subfolder CollectiveCommunication (second part of the

project): Contains the sources of the implemented POP-C++

distribution including collective communication. UML files

with diagrams describing the POP-C++ parser and the

design of collective communication in POP-C++ are also

located there.

Subfolder website: All the meeting minutes, plannings,

report extracts and goal specifications are in this subfolder.

(UML files have been edited with StarUML)

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

67 Report Schrag Manuel

3. Source code

This section includes only source code which is helpful for a better understanding when reading this

report. The entire source code of the group parser can be found and consulted on the CD which is

coming with the report.

3.1. Code model for the base POPGroup template

#include <iostream>

#include <vector>

#include "RankException.h"

using namespace std;

template <class U>

class POPGroup {

};

3.2. Code model for specialized POPGroup templates

At the actual state, the group parser only generates code for three different reduce operations which

are: MAX, MIN and the logical OR. Other functions could be added in the future by adding constant

static members to the POPGroup template and adding the code to generate to the file popc-

1.2/grpparser/grpclassmember.cc. Remember that T is a special character in the file below and should

never be used inappropriate.

template<>

class POPGroup<T> {

 vector<T*> members;

 vector<T*>::iterator it;

 int size;

 _parocGroupT *stub;

public:

 const static int _MAX=0;

 const static int _MIN=1;

 const static int _OR=2;

 POPGroup() {

 size=0;

 stub = new _parocGroupT(&members, &size);

 }

 bool isEmpty() {

 return size==0;

 }

 void emptyGroup() {

 members.clear();

 size=0;

 }

 void add(T &o) {

 members.push_back(&o);

 size++;

 }

 void add(T *o, int nb) {

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

68 Report Schrag Manuel

 for(int i=0;i<nb;i++) {

 members.push_back(&(o[i]));

 size++;

 }

 }

 void createMembers(int nb) {

 for(int i=0;i<nb;i++) {

 members.push_back(new T());

 size++;

 }

 }

 void removeAt(int rank) {

 if(rank<0 || rank>(size-1))

 throw RankException(rank);

 it=members.begin()+rank;

 members.erase(it);

 size--;

 }

 void remove(T *o, int nb) {

 int rank;

 for(int i=0;i<nb;i++) {

 rank = getRank(o[i]);

 removeAt(rank);

 }

 }

 int getRank(T &o) {

 for(int i=0;i<size;i++) {

 if(members.at(i)==&o) {

 return i;

 break;

 }

 }

 return -1;

 }

 int getSize() const {

 return size;

 }

 T &getMember(int rank) {

 if(rank<0 || rank>(size-1))

 throw RankException(rank);

 else

 return *(members.at(rank));

 }

 void merge(POPGroup<T> &g) {

 for(int i=0;i<g.getSize();i++)

 add(g.getMember(i));

 }

 _parocGroupT &comm() {

 return *stub;

 }

};

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

69 Report Schrag Manuel

3.3. Exception handling in collective communication

class RankException {

 int rank;

 char message[40];

 public:

 RankException(int r) {

 rank=r;

 sprintf(message,"Exception: Rank %d out of range\n",rank);

 }

 char *getMessage() {

 return message;

 }

};

4. Definitions

Many of the definitions are copied, translated or inspired by definitions found on Wikipedia [10].

Autoconf Autoconf is a tool for producing shell scripts that automatically configure

software source code packages to adapt to many kinds of UNIX-like

systems. The configuration scripts produced by Autoconf are independent

of it when they are run

Automake GNU Automake is a programming tool that produces portable makefiles for

use by the make program, used in compiling software. It is part of the GNU

build system. The makefiles produced follow the GNU Coding Standards.

Bandwidth The amount of data which can be transferred in a certain period from one

computer to another. A higher bandwidth means faster access to the

requested data (translated from http://www.isllight.de/woerterbuch.htm)

Benchmarking In computing, a benchmark is the act of running a computer program, a set

of programs, or other operations, in order to assess the relative

performance of an object, normally by running a number of standard tests

and trials against it

Bison GNU bison is a free parser generator computer program written for the

GNU project. It is mostly compatible with Yacc, and offers several

improvements over the earlier program. It is commonly used in

conjunction with flex, but lexical analysers can also be hand-written or

produced by some other automated method

C C is a general-purpose, block structured, procedural, imperative computer

programming language. Although C was designed as a system

implementation language, it is also widely used for applications

C++ C++ (pronounced "see plus plus") is a general-purpose programming

language with high-level and low-level capabilities. It is a statically typed,

free-form, multi-paradigm, usually compiled language supporting

procedural programming, data abstraction, object-oriented programming,

and generic programming

Cluster A computer cluster is a group of loosely coupled computers that work

together closely so that in many respects they can be viewed as though

they are a single computer. The components of a cluster are commonly,

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

70 Report Schrag Manuel

but not always, connected to each other through fast local area networks

CPU A central processing unit (CPU), or sometimes simply processor, is the

component in a digital computer capable of executing a program

BNF The Backus–Naur form (BNF) is a metasyntax used to express context-free

grammars: that is, a formal way to describe formal languages

Ethernet Ethernet is a family of frame-based computer networking technologies for

local area networks (LANs)

Finite state machine A finite state machine (FSM) or finite state automaton (plural: automata)

or simply a state machine is a model of behavior composed of a finite

number of states, transitions between those states, and actions

Flex Flex is a tool for generating scanners: programs which recognize lexical

patterns in text. Flex reads the given input files, or its standard input if no

file names are given, for a description of a scanner to generate. The

description is in the form of pairs of regular expressions and C code, called

rules

GNU GNU is a computer operating system composed entirely of free software.

Its name is a recursive acronym for GNU's Not Unix, which was chosen

because its design is Unix-like, but differs from Unix by being free software

and by not containing any Unix code

HPC The term high performance computing (HPC) refers to the use of (parallel)

supercomputers and computer clusters, that is, computing systems

comprised of multiple processors linked together in a single system with

commercially available interconnects

InfiniBand InfiniBand is a switched fabric communications link primarily used in high-

performance computing. The InfiniBand architecture specification defines

a connection between processor nodes and high performance I/O nodes

such as storage devices

Lex In computer science, lex is a program that generates lexical analyzers

("scanners" or "lexers"). Lex is commonly used with the yacc parser

generator. It reads an input stream specifying the lexical analyzer and

outputs source code implementing the lexer in the C programming

language

Linux Linux is a Unix-like computer operating system. Linux is one of the most

prominent examples of free software and open source development; its

underlying source code can be freely modified, used, and redistributed by

anyone.

MPI The MPI is a language-independent communications protocol used to

program parallel computers

Myrinet Myrinet is a high-speed local area networking system to be used as an

interconnect between multiple machines to form computer clusters

Node A node is a critical element of any computer network. It can be defined as

a point in a network at which lines intersect or branch, a device attached

to a network, or a terminal or other point in a computer network where

messages can be created, received, or transmitted

SPMD SPMD (Single Process, Multiple Data) or (Single Program, Multiple Data) is

a technique employed to achieve parallelism. Tasks are split up and run

simultaneously on multiple processors with different input in order to

obtain results faster

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

71 Report Schrag Manuel

SSH Secure Shell or SSH is a network protocol that allows data to be exchanged

over a secure channel between two computers. Encryption provides

confidentiality and integrity of data. SSH uses public-key cryptography to

authenticate the remote computer and allow the remote computer to

authenticate the user, if necessary.

TCP The Transmission Control Protocol (TCP) is one of the core protocols of the

Internet protocol suite. TCP provides reliable, in-order delivery of a stream

of bytes, making it suitable for applications like file transfer and e-mail.

Templates In computer programming, templates are a feature of the C++

programming language that allow code to be written without

consideration of the data type with which it will eventually be used.

UNIX Unix is a computer operating system. Today's Unix systems are split into

various branches, developed over time by AT&T as well as various

commercial vendors and non-profit organizations.

Yacc Yacc generates a parser (the part of a compiler that tries to make syntactic

sense of the source code) based on an analytic grammar written in a

notation similar to BNF. Yacc generates the code for the parser in the C

programming language.

5. References

[1] Project description http://www.eif.ch/gestionprojets/private/rechercher.jsp?inoid=1620

[2] MPI Introduction http://www.mhpcc.edu/training/workshop/mpi/MAIN.html

[3] POP-C++ runtime
Semester work summer 2007 “WSDL and POP-C++ in the library of the EIA-

FR, Switzerland

[4] The POP-C++ User

manual
http://www.eif.ch/gridgroup/popc/docs/manual.pdf

[5] Phoenix overview http://sims.cs.unm.edu/ssl/doku.php?id=machine:phoenix:overview

[6] OpenMPI and TCP
http://www.beowulf.org/archive/2006-November/016904.html

http://www.open-mpi.org/faq/?category=tuning

[7] Illustration of MPI

functions
http://www.cs.unm.edu/~riesen/lesson_10.pdf

[8] C++ templates http://www.cplusplus.com/doc/tutorial/templates.html

[9] Flex/Bison
http://www.gnu.org/software/bison/manual/index.html

http://www.gnu.org/software/flex/manual/

[10] Wikipedia http://www.wikipedia.org/

[11] Autoconf/Automake
http://www.amath.washington.edu/~lf/tutorials/autoconf/toolsmanual_t

oc.html

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

72 Report Schrag Manuel

6. Figures

Figure 1 The POP-C++ class diagram .. 8

Figure 2 Simplified remote method call in POP-C++ .. 9

Figure 3 Different object-sided invocation requests [4] .. 9

Figure 4 Distributed Memory System [2] ... 10

Figure 5 Message passing with buffering at receive [2] ... 11

Figure 6 Asynchronous MPI latency and data sending test scenario ... 15

Figure 7 Synchronous MPI latency and data sending test scenario ... 16

Figure 8 Asynchronous POP-C++ latency and data sending test scenario ... 17

Figure 9 Synchronous POP-C++ latency and data sending test scenario ... 17

Figure 10 Screenshot of asynchronous test program in MPI ... 19

Figure 11 Screenshot of synchronous test program in MPI ... 20

Figure 12 Screenshot of asynchronous test program in POP-C++.. 21

Figure 13 Screenshot of synchronous test program in POP-C++ ... 22

Figure 14 Output to define latency of OpenMPI asynchronous... 24

Figure 15 Output to define latency of OpenMPI synchronous .. 25

Figure 16 Output to define latency of POP-C++ asynchronous .. 26

Figure 17 Output to determine latency of POP-C++ synchronous ... 27

Figure 18 Prediction of the test scenarios .. 28

Figure 19 Test in range of single bytes ... 29

Figure 20 Messages of 0 to 1KB in increments of 64B ... 30

Figure 21 Messages of 1KB to 10KB in increments of 1KB ... 31

Figure 22 Messages of 10KB to 100KB in increments of 10KB ... 32

Figure 23 Messages of 0 to 1MB in increments of 64KB .. 33

Figure 24 Global differences between prediction and measurement in OpenMPI async 34

Figure 25 Global differences between prediction and measurement in OpenMPI sync 34

Figure 26 Global differences between prediction and measurement in POP-C++ async 35

Figure 27 Bandwidth decrease in POP-C++ sync .. 35

Figure 28 Global differences between prediction and measurement in POP-C++ sync 36

Figure 29 MPI broadcast [7] ... 40

Figure 30 MPI Scatter [7] ... 40

Figure 31 MPI Gather [7] .. 40

Figure 32 MPI Reduce [7] ... 40

Figure 33 MPI Allgather [7] ... 40

Figure 34 MPI All-to-All [7] ... 41

Ecole d'ingénieurs et d'architectes de Fribourg
Hochschule für Technik und Architektur Freiburg Improving POP-C++ for HPC

2007

73 Report Schrag Manuel

Figure 35 MPI Allreduce [7] .. 41

Figure 36 POP-C++ Broadcast ... 41

Figure 37 POP-C++ Scatter .. 41

Figure 38 POP-C++ Gather .. 42

Figure 39 POP-C++ Reduce ... 42

Figure 40 POP-C++ Allgather .. 42

Figure 41 POP-C++ All-to-all ... 42

Figure 42 POP-C++ Allreduce .. 43

Figure 43 Vastly simplified functionality of the POP-C++ parser.. 45

Figure 44 Use case diagram to handle a group .. 46

Figure 45 Scatter operation in case of inequality of parameter size and group size 47

Figure 46 Sequence diagram of use case, “Call type specific method” ... 49

Figure 47 Architecture of the collective communication library .. 50

Figure 48 Integration of the group parser in the POP-C++ compilation process 58

Figure 49 Binary tree structure for broadcast and reduce ... 62

Figure 50 Asynchronous group calls with temporary thread ... 63

7. Tables

Table 1 Optimal benchmarking for data sending in POP-C++ and MPI .. 13

Table 2 Output to define average bandwidth of OpenMPI asynchronous .. 24

Table 3 Output to define average bandwidth of OpenMPI synchronous .. 25

Table 4 Output to define average bandwidth of POP-C++ asynchronous.. 26

Table 5 Output to define average bandwidth of POP-C++ synchronous ... 27

Table 6 Standard deviation for messages of 10KB to 100KB .. 32

Table 7 Disturbed measurement on the cluster ... 37

Table 8 Performances of POP-C++ vs. MPI ... 38

Table 9 Explanation and visualization of MPI collective communication functions 41

Table 10 Explanation and visualization of POP-C++ collective communication functions 43

Table 11 How the POP-C++ parser generates methods from .ph file .. 54

