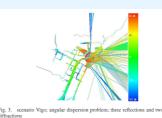
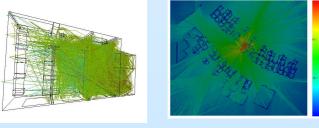

A New Approach to Solve Angular Dispersion of **Discrete Ray Launching for Urban Scenarios**

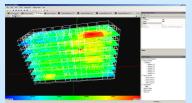

Zhihua Lai; Nik Bessis; Guillaume de la Roche; Pierre Kuonen; Jie Zhang; Gordon Clapworthy zhihua.lai@beds.ac.uk

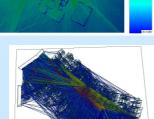
INTRODUCTION

Ray launching suffers from angular dispersion. Distant pixels are often missed when rays disperse.

- A fast discrete ray launching model is developed to validate the use of this approach.
- It has enabled the practical use of this model in other scenarios (indoor, indoor-to-outdoor)



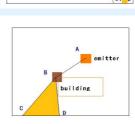



OBJECTIVES

- To solve angular dispersion of discrete ray launching
- To improve the accuracy of ray launching propagation models
- To speed up ray launching
- To extend the principle to indoor, indoor-to-outdoor propagation prediction

APPLICATIONS

References



SOLUTIONS

• Fill the gap between reflection rays

• Fill the gap between diffraction rays

• Avoid double marking the same pixels

Al	gorithm 2 avoid double marking
	$M_r \leftarrow 3D$ counter matrix for reflection
	$M_d \leftarrow 3D$ counter matrix for diffraction
	$C_r \leftarrow$ Initial reflection counter
,	$C_d \leftarrow$ Initial diffraction counter
	$Inc(C_r)$ if reflection shadow area is being handled.
	$lnc(C_d)$ if diffraction shadow area is being handled.
j	if $M_r[\text{current cube}] \neq C_r$ then
	handle_reflection(current cube)
	$M_r[\text{current cube}] \leftarrow C_r$
	collect current cube for next reflection
,	end if
į	if M_d [current cube] $\neq C_d$ then
	handle_diffraction(current cube)
	M_d [current cube] $\leftarrow C_d$
	collect current cube for next diffraction
,	end if

Algorithm 1 avoid pixels missing (reflection)

end for

igorium 1 avoid pixels missing (reflection) $v_1 \rightarrow \text{cflection Ray 1} (C-A)$ $v_2 \leftarrow \text{Reflection Ray 2} (C-B)$ $c_1 \leftarrow \text{Boundary Cube that } v_1 \text{ hits}$ $c_2 \leftarrow \text{Boundary Cube that } v_2 \text{ hits}$ for all $C \in \text{Cubes between } c_1 \text{ and } c_2 \text{ do}$ Launch Reflection Rays from A(or B) to Cand for

RESULTS

- A fast and accurate discrete ray launching model for outdoor, indoor and indoor-to-outdoor has been developed.
- Significant speedup through parallelism via POP-C++

a
a

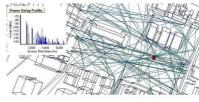


Fig. 9. Munich, multi-paths at LOS receiver

faximum ventical Dimaction	Cimmited .
Maximum Transmission	Unlimited *
* until signal stren	gth is under threshold
	TABLE II
COMPUT	
COMPAR	RISONS FOR BOTH RUNS

TABLE I NETWORK CONFIGURATIONS FOR BOTH RUNS

8.1 km² (2.4km X 3.4km X 100m) GSM 947MH 5 X 5 X 5

Area Buildings Antenna Typ hitter Freque Resolution

Hor

	With	Without
Total Reflections	121, 170	89, 902
Total Diffractions	157, 201	101, 356
Total Multi-paths	122, 722	93, 521
Avg STD for 3 routes	7.11	7.81
Avg RMSE for 3 routes	7.02	7.69
Avg running time (s)	49	22

[1] Z. Lai, N. Bessis, G. de la Roche, H. Song, J. Zhang and G. Clapworthy, An intelligent ray launching for urban coverage prediction, 3rd European Conference on Antennas and Propagation EUCAP 2009, Berlin, Germany, 23-27 March 2009, pp. 2867-2871. [2] G. de la Roche, J. Gorce and J. Zhang, Optimized implementation of the 3-D MR-FDPF method for Indoor radio propagation predictions, 3rd European Conference on Antennas and Propagation EUCAP 2009, Berlin, Germany, 23-27 March 2009, pp. 2241-2245. [3] Z. Lai, N. Bessis, P. Kunoen, G. de la Roche, J. Zhang and G. Glapworthy, A performance evaluation of a grid-enabled objectoriented parallel outdoor ray launching for wireless network coverage prediction, The Fifth International Conference On Wireless and Mobile Communications ICWMC 2009, Cannes/La Bocca, France, 23-28 August 2009, pp. 38-43

