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Abstract—The use of parallel technologies to solve complex
scientific problems has gained increased popularity. The ray
optical methods are deterministic propagation approaches that
are based on geometrically searching paths between emitter and
receivers. They offer higher accuracy than empirical models, but
suffer from slow calculations on exhausted rays that have to
be searched. In this paper, an object-oriented scheme based on
POP-C++ for parallel objects to accelerate outdoor ray launching
is described. Performance evaluation is presented to show that
this parallel scheme is promising in outdoor wireless propagation
modeling. The possibility of running this model in the distributed
grid environment is also discussed. Results have shown the great
potential of using such a parallel model to predict accurate
outdoor wireless propagation scenarios within a short time.

Index Terms—Parallel ray launching, POPC++, radio propa-
gation, outdoor coverage prediction, performance evaluation.

I. INTRODUCTION

During the last few years, wireless propagation modeling
has been repeatedly quoted as a key factor in the planning and
optimization process of a 3G/4G network [1][2]. Because of
the rapid development of radio networks, there is an increasing
need for fast and accurate 3D propagation models.

Ray Optical (RO) methods are deterministic approaches that
are being frequently used. They are generally computation
intense but give a high accuracy [3]. This can be generally di-
vided into two categories: ray tracing and ray launching which
can be distinguished by the way they handle ray searching
[4][5]. RO are based on geometrically searching possible rays
between emitter and receivers. Usually they are more suitable
in the urban scenarios rather than indoor. This is because
outdoor ray optical methods suffer less from material aspects
since the given database usually is not complete (only contains
few material types such as concrete for buildings, trees etc). In
contrast, material effects play a much more important role in
indoor modeling which limits the performance of ray optical
methods [6]. In both cases, the performance of RO is usually
restricted by a limited number of combined ray iterations.
Parallelism of RO improves the performance which has been
addressed in literature. For example, in [7], a parallel approach
for 3D ray tracing has been proposed with some interesting
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results.

IRLA, namely Intelligent Ray Launching Algorithm is
presented in [8], which gives a fast and accurate coverage pre-
diction for 3D outdoor scenarios. IRLA utilizes ray launching
for outdoors by fast calculation of roof-top diffractions which
are considered as dominant rays for urban scenarios [8][4].
The combined diffractions and reflection for horizontal planes
are also utilized.

The rest of the paper is organized as follows: in Section
II, the basic structure of IRLA algorithm for outdoors is
described, followed by the discussion of a parallel version
of IRLA in Section IIlI, with the potential to run IRLA in a
distributed grid environment. Results are given in Section IV
followed by Section V which concludes our current work.

II. WAVE PROPAGATION WITH IRLA

IRLA consists of three main components [8]: Light-Of-
Sight engine (LOS), Vertical Diffraction (VD) engine, and
Horizontal Diffraction and Reflection engine (HDR). The
effect of antenna pattern can be included in LOS engine or
they can be dealt in a post-processing to adjust the prediction
values. In this section, the IRLA is introduced with the
discussion about multi-threading improvement.

A. Single processor version

IRLA relies on the cubic data obtained from discretization
of the environment. One cubic element can represent building
walls, ground, trees etc. IRLA collects LOS pixels (visible to
emitter) by scanning cubes along pre-defined directions. To
avoid the problem of missing pixels caused by the dispersion
of rays with a constant angle defined, all discrete rays connect-
ing emitter and the fringe pixels of the scenario are considered.
The total rays can be determined. As the LOS does not have
iterations of ray propagating, it can be finished within a time of
O(n?) magnitude. The pixels obtain by LOS engine should be
ready for HDR engine, which iterates the ray launching. HDR
is responsible for finding reasonable ray paths of combined
reflections and diffractions horizontally (Fig. 1).

VDR has the complexity of O(n?), which mathematically
calculates the number of roof-top diffractions for a outdoor ray
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path. It launches the ray vertically and intelligently addresses
the vertical diffractions by actively connecting paths between
buildings. HDR is the most time-consuming part of IRLA. It

HDR Reflections and Diffractions in Urban

Fig. 1.

launches a complete set of combinations of diffraction and
reflection rays. The running time depends on the number of
maximum iterations, the number of obstacles and a threshold
signal strength used to terminate radio waves that fall below.
Despite the cut-off searches of shadow area of diffraction [8],
HDR still requires much computation power.

Post-processing of IRLA can include antenna pattern ad-
justment and indoor prediction. If the indoor coverage is not
required, the waves are therefore ignored when they penetrate
the buildings. A considerable memory and computation power
can thus be saved. On the other hand, an empirical loss can
be added to indoor prediction.

B. Multi threading version

Potentially, IRLA can run faster on multi-processor ma-
chines by simply implementing multi-threading. Usually the
operating system can schedule more cycles on multi-threading
than the normal single-threaded application. For example,
the CPU can be better utilized (around 90%) rather than
approximately 50% on a dual-core machine. However, the
performance is limited because of physical resources (i.e.
limited CPU, memory) and possible delays caused by thread
synchronization. In Fig. 2, it is observed that with the few
threads used, the performance will be increased but it quickly
reaches to the limit and this performance tends to degrade
as the number of threads increases afterwards. This is due to
the fact that the race conditions of threads tend to happen
when there are many threads. It is also noticed that multi-
threading IRLA consumes memory as the number of threads
grows, which in a way limits the performance acceleration.

III. MULTI PROCESSOR VERSION OF IRLA

In this section, the parallel scheme that applies to IRLA
is given. The performance analysis method is closely related
to Bulk Synchronous Programming (BSP) model[9]. BSP is
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Fig. 2. The Performance of Multi-threaded IRLA

used to design parallel algorithms which can be divided into
concurrent computation, communication and barrier synchro-
nization. IRLA is parallelized as described next. The future
potential to run IRLA in distributed grid environment [10][11]
is also discussed.

A. Parallel model

IRLA is distributed to parallel objects. Each object handles
parts of the parallel task and finally the results are collected.
As IRLA is composed of three parts as mentioned in II, the
parallel IRLA divides the computation, distributes them among
processors and collects results, as given in Algorithm 1.

Algorithm 1 Parallel IRLA for Outdoor
Parallel _IRLA(Master, Children, Tx)
Master.Create(); Master.LoadData();
for all N in Children do
N .Create();
N .LoadData();
end for
Master. WaitForAll(Children);
Master.IRLA_LOS_Fully();
Children.IRLA_LOS_Partially();
for all N in Children do
N.HDR();
end for
Master.WaitForResults(Children);
for all N in Children do
N.VD();
end for
Master. WaitForResults(Children);
Master.PostProcess();

The objects are created in parallel on the master node M
and children nodes Ny, Na, ... N,. On creation, they are given
an ID. Building data, antenna data and network configurations
have to be loaded by all objects before actual simulation starts.
This is ensured by setting up a barrier. As the time of loading
data can usually be trivial, the cost of this barrier can usually
be neglected. Because LOS engine has a lower computation
complexity compared to other components, it will only be



performed fully on the node that the result is stored (in this
case, on the master node), while the rest of the nodes would
just simply obtain LOS pixels for the use of a HDR engine.
This will avoid unnecessary communication overhead spent on
trivial tasks.

HDR engine will be performed concurrently on all objects.
Each object is responsible for parts of the computation, which
is divided by the number of processors based on their unique
identity number. Double Marking (DM), occurs when dupli-
cation of rays are mistakenly calculated [4], which will result
in incorrect results and waste a lot of computation power. To
handle DM as efficient as possible, the following rules apply.

o DM can be efficiently handled locally, instead of globally,
among processors. This is due to the expensive overhead
needed by communication and synchronization among
parallel objects. To avoid this, it is required to distribute
rays of a continuous region to each object. Therefore each
processor will utilize local cache hit to avoid as much DM
as possible.

o« DM will occur often on the border of regions of rays
assigned, in this case, DM can be avoided on the master
node by ensuring the critical session that no two processor
access the same pixels at the same time.

The VD Engine can be parallelized in a similar way. Each
parallel object is responsible for parts of computation, which is
a continuous region. At the master node, results are collected.
Since the complexity of VD is constant, independent of the
number of diffractions defined, the speed up of the VD engine
by employing more processors has not been clearly observed.
In contrast, by using more processors on the calculation of VD
will incur overhead of communication. The efficiency of the
parallel VD engine can be modeled by the following formula
(which derives from [9]):

COSTyp = max(T;) + max(M;) + 1 (1

where p represents the number of parallel objects;

T; is the time of local computation by process i;

M; is the time of global communication (messages sent and
receiver by process %);

[ is the cost of setting up the barrier for synchronization.

If communication expense is higher than maximum computa-
tion time, there is no need to involve more processors on the
VD engine. The model given here assumes homogeneous pro-
cessors. Therefore, the computation power is treated equally
for every parallel object. In reality, processors are usually
have different capacities, which will be discussed in the next
section.

To avoid as much communication as possible, the job
distribution scheme is dynamically obtained on each object
based on the total size of work and its object ID. To avoid
using up too much memory space on children nodes, the
temporary results obtained after each engine are sent to the
master node. It has been observed that as many as possible
results should be collected instead of sending pieces of data.
Setting up communication can be quite costly, and thus, this
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should be prevented whenever possible.

The master node has to perform post-processing, which
includes the antenna pattern adjustment and indoor points
prediction. The indoor coverage prediction will usually be
empirical by adding a empirical loss through building walls
by considering the signal strength of outside buildings. This
part of work is trivial compared to HDR and VD engine and
hence there is no need for it to be parallelized.

B. Grid-enabled IRLA

As a matter fact, the resources available in the grid are
different in terms of memory and computation power [12].
The reason for running IRLA in the grid is to allow the
identification of suitable resources, which potentially will
make IRLA run faster and thus possibly be able to solve large
problems.

POP-C++ [13] is a high level C++ object oriented program-
ming language that is designed for distributed algorithms. By
using POP-C++, it is flexible to use the job manager, which
specifies the requirements of nodes (such as min memory and
power) that jobs are run on rather than the exact machines.
However, the runtime environment does not guarantee an
optimal match of requirements. Rather, it searches the known
nodes and returns the first one that satisfies the requirement
given [13]. Assume the nodes searching time is trivial, the
importance of finding optimal resources in the grid to be able
to run IRLA can be clearly seen in:

o Finding nodes of similar power and memory that will
minimize the waiting time of faster processors: all sub-
jobs will be finished roughly at the same time.

o Identifying optimal distribution of jobs by the capacity
of nodes available, which will also shorten the waiting
time. For example, faster processors handle more and/or
harder jobs.

However, in reality, the exact running time cannot be guar-
anteed. Therefore, only estimation can be analyzed. Assume
there are n (N1, Ny ... N,) nodes available and M nodes
are required to run IRLA. Their costs of communication are
empirically listed as C1, Cs .. C,, and the computation power
(in terms of M-flops), which are dynamically obtained as
P, P, .. P,. Note this value is adjusted during runtime
(empirically) according to the usages of nodes.

Assume the tasks of IRLA can be noted as J, Jo and Js,
for IRLA LOS, HDR, and VD respectively, the parallel model
can be analyzed theoretically. Two rules can be observed: the
bigger P the better, and the smaller C' the better. Unfortunately
there is no relation between P and C, and hence a performance
index (such as F; = uC; x wP;, u, w are coefficients) can be
defined. By sorting F; in non-ascending order, the candidate
nodes to run IRLA can be chosen. By applying weighting

function on F, (such as j;, = ZHL

.ﬂiFk- , K represents the
computation intensity of the job) eachnode obtains the amount
of jobs depending on the performance index. Generally, the
bigger F' the more jobs a node gets. Unlike VD, and LOS, the
simulation activity of HDR engine can not be fully predictable

because of unforeseen ray phenomenal. For example, a ray



TABLE I
NETWORK CONFIGURATIONS OF MUNICH SCENARIO

Area 8.1 km? X 100m
Resolution 5X5X5
Maximum Reflection 15
Maximum Horizontal Diffraction 15
Maximum Vertical Diffraction Unlimited *
Maximum Transmission Unlimited *

* until signal strength is under threshold

may be terminated early because its signal strength falls
below a threshold value. VD requires the largest computation
resources. By roughly dividing VD among objects (assume
the use of homogeneous processors), the running time of each
sub-jobs vary at runtime. Therefore, this will cause a cost in
synchronization of faster processors. One possible solution to
this can be through the empirically estimation for the density
of urban sub-regions. This will be explored in further work.

IV. RESULTS

In this section, the results of running parallel IRLA objects
will be presented. COST-231 Munich Scenario [14] will be
used as a benchmark. It has been shown in [8] that after a
proper calibration of the materials, such model provides a
RMSE (Root Mean Square Error) of 6dB between simulation
and measurements. This high accuracy makes IRLA efficient
for wireless network planning. However, in order to test a
lot of parameters for the base stations, it is also important to
reduce as much as possible the simulation time.

To fully evaluate the performance of parallel IRLA in term
of speed, a complex network configuration has been chosen
as shown in Table I (the number of combined reflections
and diffractions in the horizontal plane is increased). Pre-
defined empirical loss values for reflection, diffraction and
transmission are given as 6, 8 and 15dB respectively, which
yields a loss range of around 200 dB (a combination of
15 reflection and 15 diffraction). The results of parallelizing
each component of IRLA are given below, followed by the
description of final results with relevant performance issues
analyzed.

A LOS

LOS is fully performed on the master node where pixels are
obtained from (Fig. 3), the rest of the nodes run a partially
LOS which purely obtain visible secondary pixels that are used
in VD. The experiment has shown that the running time on
LOS on a standard PC (Table II) is around 6 seconds.

B. HDR

HDR is considered the most time-consuming part of IRLA.
Since the complexity of LOS is trivial and of VD is constant,
the overall acceleration of parallelism relies on HDR. That is to
say, if the complexity of this part is low (e.g. few ray iterations
specified), it would have run faster without parallelism due to
the communication overhead that would occur.

No clear job distribution scheme can be easily observed,
which is due to the rays bouncing around in dense urban
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Fig. 3. The pixels obtained by master node

Fig. 4. HDR obtained by 4 different nodes (7 processors in all)

environment. It also shows that the radio wave can hardly
propagate far through reflection and diffraction in an horizontal
plane (Fig. 4 shows the propagating effects of a high number
of combinations of reflections and diffractions).

C. VD

The most dominant rays for dense urban are roof-top
diffractions which can be modeled by VD, which actively
checks the paths of shortest vertical diffractions. VD has a low
complexity, which depends linearly on the size of scenario,
unlike HDR, the complexity of which is largely affected by
the number of buildings. In Fig. 5, each processor has been
assigned an equal piece of work. The job distribution can
be easily observed, which is because VD only considers the
shortest diffraction path over roof-tops without considering
reflections.

D. Final results

The data collected from children nodes are finally merged
together, which results in the coverage prediction for Munich
city as depicted in Fig. 6.



Fig. 5. VD obtained by 3 different nodes (7 processors in all)

TABLE 1T
NODES SPECIFICATION
CPU 1.6GHz
Cores 1
RAM 512MB
Software | Ubuntu 8.1, POP-C++ 1.2

The parallel simulation with different number of nodes
have been carried out. By concurrently performing heavy
computation, the simulation time (Table III) is shortened. It has
been observed that the running time of VD is trivial so the cost
of synchronization Tgyq is small. There is little space for this
part of work to be speed up. On the other hand, HDR can be
much shorten by utilizing more processors. LOS engine does
not vary too much because the jobs are equally divided and can
be determined beforehand. As the number of parallel objects is
incremented, the cost for communication and synchronization
tends to grow. Using parallelism, the performance is doubled
by simply using 8 processors.

It is noticed that it is possible to create more than one object
on the same node, which locally utilizes CPU usages. These
objects are logically independent of each other, although they
are created on the same physical machine. The cost to initialize
them will be unnecessarily expensive, which limits the number

TABLE III
RUNNING TIME (SECONDS)
N | T Tios | Tuor | TBhar | Tvp Tgya
1 132.0 6.5 39.7 9.0 9.4 0.2
2 101.1 6.3 33.3 14.8 5.7 0.2
3 80.2 6.3 32.5 23.5 4.4 0.1
4 71.0 6.6 27.1 21.9 4.4 0.2
5 69.9 6.3 26.9 23.4 32 0.1
6 66.4 6.7 26.7 26.3 3.2 0.2
7 64.1 6.6 25.8 22.0 2.5 0.1
8 63.9 6.2 23.4 22.0 2.6 0.2
where

N represents the number of nodes used

(the specification is listed in Table II);

T represents the total running time,

which includes the time of communication;

Ti.os represents the maximum computation time for LOS engine;
Tupr represents the maximum computation time for HDR engine;
Tvp represents the maximum computation time for VD engine;
TBhdr represents the maximum object idle time

after the barrier of HDR engine;

Tgyq represents the maximum object idle time

after the barrier of VD engine;
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of objects that can be created because the memory required
is linearly dependent on the number of objects. This can be
avoided by using multi-threading technology.

Fig. 6.

The final results collected at master node

V. CONCLUSION AND PERSPECTIVES

This paper has presented a parallel scheme to run IRLA
(Intelligent Ray Launching Algorithm for Urban). The poten-
tial to employ grid technology is also discussed. Experiments
have been carried out by using up to 8 parallel objects. It is
observed that IRLA benefits from parallelism. An intelligent
job distribution scheme remain undefined. Further work in-
cludes adding multi-threading support for parallel objects. It
is believed this will improve the performance because the cost
to start a thread is less than a process (object) [15].

The experiments have also shown the problem of equally
dividing jobs among processors: faster processors would finish
jobs early, thus they have to wait for each barrier synchroniza-
tion. This is costly and has to be avoided in further works
by designing and implementing intelligent job scheduling
algorithms for POP-C++.

Parallel IRLA can potentially run faster by considering a
small but enough number (instead of 15 reflections and 15
diffractions used for performance evaluation purposes) of ray
iterations. It can be further accelerated by only calculating
ground-level pixels for outdoors. Wireless network character-
istics such as the effective antenna radiation can be studied in
further work.

BSP model [9] has been shown to fit into IRLA for outdoor,
and is expected to be applied to IRLA for indoor in the future.

The use of "MapReduce” (“which is a software framework
introduced by google to support distributed computing on
large data sets on clusters of computer”)[16] is currently
being investigated, which could be beneficial in improving the
overall performance of parallel IRLA.
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