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Introduction

Propagation modeling serves as a fundamental 
input in the wireless network planning and 
optimization process. Especially, in order to 
determine the interferences for an indoor fem-
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Abstract
Propagation modeling has attracted much interest because it plays an important role in wireless network 
planning and optimization. Deterministic approaches such as ray tracing and ray launching have been in-
vestigated, however, due to the running time constraint, these approaches are still not widely used. In previ-
ous work, an intelligent ray launching algorithm, namely IRLA, has been proposed. The IRLA has proven to 
be a fast and accurate algorithm and adapts to wireless network planning well. This article focuses on the 
development of a parallel ray launching algorithm based on the IRLA. Simulations are implemented, and 
evaluated performance shows that the parallelization greatly shortens the running time. The COST231 Munich 
scenario is adopted to verify algorithm behavior in real world environments, and observed results show a 5 
times increased speedup upon a 16-processor cluster. In addition, the parallelization algorithm can be easily 
extended to larger scenarios with sufficient physical resources.

tocell base station with the outdoor macrocell, 
accurate coverage predictions have to be ob-
tained via propagation modeling (Zhang & De 
La Roche, 2010). Planning and optimization of 
a wireless network usually requires simulation 
of hundreds of User Equipments (UE) and the 
path loss between these UEs and base stations 
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are obligatory to investigate the best servers 
and handovers etc.

Current propagation models can be di-
vided into three categories: empirical models, 
semi- deterministic and deterministic models. 
Empirical models are the simplest models; 
which are usually based on simple factors such 
as the carrier frequency and distance. They 
are extremely fast because of statistical model 
environmental factors. The semi-deterministic 
models are enhanced by introducing relevant 
deterministic factors in the computation. Such 
models provide higher accuracy than empirical 
models, thus running time of semi-deterministic 
models is usually realistically acceptable upon 
conventional computing power, such as PCs.

The deterministic models consider envi-
ronmental factors, e.g., buildings and walls, 
which are time-consuming compared to empiri-
cal and semi-deterministic models. However, 
the deterministic models provide the highest 
accuracy out of these categories.

Ray-based methods belong to determin-
istic models and they are based on geometry 
path finding algorithms (Haslett, 2008). Ray-
based methods in general are divided into two 
subcategories: ray tracing and ray launching. 
Ray tracing adopts a backward path search 
technique, which guarantees that exact paths 
between transmitters and receivers can be 
computed (Glassner, 1989). Ray tracing offers 
high accuracy but it is extremely time consum-
ing. The complexity grows exponentially with 
the number of objects and the maximum ray 
iterations (Nagy, Dady, & Farkasvolgyi, 2009). 
Ray tracing is used for precise point-to-point 
predictions. Several acceleration techniques 
such as pre-processing (Wolfle, Gschwendtner, 
& Landstorfer, 1997) or the use of a General 
Purpose Graphic Processing Unit (GPGPU) 
(Rick & Mathar, 2007) have been proposed. The 
performance of ray tracing is usually limited 
by the inherent complex ray-object intersection 
tests and many techniques have been proposed 
over the past years to speed up computation 
(Degli-Esposti, Fuschini, Vitucci, & Falcia-
secca, 2009). Ray launching emits the rays from 
sources; which are separated by a small angle. 

This method is efficient in an area prediction 
because the rays are actively followed. However, 
this approach leads to two inherent problems. 
The first problem is angular dispersion of ray 
launching. The distant pixels are less likely to 
be visited by rays because rays disperse as they 
are propagated. For example, a distant small 
object may be missed by rays because a fixed 
angle is used to separate rays. Secondly, the ray 
double counting arises when a sample pixel is 
marked twice by the same rays, which should 
be avoided because it reduces the accuracy of 
ray launching. Ray launching is usually faster 
than ray tracing with less accuracy. The com-
plexity of ray launching grows linearly with the 
number of objects and maximum ray iteration 
(Nagy et al., 2009).

In (Lai, Bessis, De La Roche, Song, Zhang, 
& Clapworthy, 2009), a new model based on 
discrete ray launching, namely the Intelligent 
Ray Launching Algorithm (IRLA), has been 
proposed to obtain fast propagation prediction 
(path loss and multipath components) within 
a realistic time scale. In (Lai et al., 2010), the 
authors extended this model to indoor predic-
tion, which accurately predicts the multipath 
propagation in indoor environment. The IRLA 
model has been validated with measurement 
campaigns (Lai et al., 2010), which has led to 
the effective development for network applica-
tions. In (Lai et al., 2009), the authors proposed 
an efficient method to improve the accuracy of 
IRLA by solving angular dispersion problem 
of ray launching. This method has effectively 
improved the accuracy and avoids ray double 
counting. In (Lai et al., 2009), a parallel algo-
rithm of IRLA is implemented based on a toolkit 
named Parallel Object-oriented Programming 
in C++ (POP-C++). Preliminary promising 
results have been presented, which show that 
parallel IRLA has improved the performance. 
This article is an extension of this work: is-
sues related to performance and accuracy will 
be further addressed in this work. This article 
contributes to present a parallel propagation 
algorithm that accelerates the time-consuming 
prediction. The components of the IRLA model 
are analyzed so that the most time-consuming 
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components are parallelized. Results show that 
with 16 processors, the performance can reach 
up to 5 for certain scenarios.

The rest of this article is organized as 
follows. At First, the IRLA model is briefly 
introduced. Secondly, the complexity of IRLA 
is studied, which serves as the fundamentals 
to develop the efficient parallel IRLA model. 
Then, the issues related to parallelization are 
detailed, which is followed by results that 
conclude this work.

The Ray Launching 
Model: IRLA

IRLA is a discrete ray launching model that aims 
to provide highly improved prediction in terms 
of path loss and multipath components for wire-
less propagation prediction within a short time. 
In outdoor urban scenarios, a specific procedure 
has been developed to accelerate the computa-
tions of urban rooftop diffractions. IRLA can 
be easily extended to indoor, indoor-to-outdoor 
and outdoor-to-indoor scenarios due to the well 
designed mechanisms to avoid duplication of 
rays and angular dispersion (Lai et al., 2009). 
IRLA is based on discrete cubic data set, which 
can be extracted from vector building data. 
Typically, building data for outdoor scenarios 
are simplified to 2.5-D which are described as 
polygon-shaped buildings with height informa-
tion. For outdoor scenarios, the IRLA separates 
roof-top diffractions from horizontal diffrac-
tions and reflections. The algorithm quickly 
checks the number of roof-top diffractions 
required between the transmitter and receiver. 
The components of IRLA and their relationship 
are depicted in Figure 1. Given the input data 
(building, antenna, and network configuration), 
the discrete data set is built, based on which 
Line-of-Sight (LOS) component obtains sec-
ondary pixels for reflections and diffractions.

Horizontal-Reflection-Diffraction (HRD) 
and Vertical- Diffraction (VD) are independent 
of each other and thus can be run in parallel. 
When these two components are completed, a 

post-processing procedure is carried out (such 
as antenna pattern adjustment and indoor cov-
erage prediction) and final outputs include path 
loss and multipath components.

Computational Complexity

The discrete data set size is (Nx, Ny, Nz), which 
represents the number of cubes for X, Y, and 
Z dimensions respectively. The numbers of 
building cubes are known as Nground, Nwall and 
Nroof, which represent the number of building 
ground, walls and roofs respectively. Therefore 
the total number of representing buildings can 
be denoted as:

Nbuildings=Nground ∪ Nwall ∪ Nroof

For example, there are cubes; which are 
joint edges of walls and roofs. Nbuildings depends 
on the size of the scenario, the number of build-
ings and the resolution used for building the 
discrete data. Nbuildings usually impacts on the 
computation complexity. For example, greater 
Nbuildings causes larger computational complexity 
and vice versa.

The complexity of IRLA thus can be mod-
eled by five parts: Cpre, Cpost, Clos, Cvd and Chrd, 
which represent the computation complexity 
for pre-calculation, post-processing, component 
LOS, VD and HRD respectively. Let C be the 
total complexity of IRLA, then it is can be 
obtained as following:

C C C C C C= + + + +los vd hrd pre post 	

Clos can be approximated based on the 
number of cubes on the fringe of scenario. The 
process of IRLA prediction starts with launching 
rays in all 3-D directions. Based on the discrete 
data set, the resolution and the number of cubes 
along each dimension (X, Y and Z) are known. 
Therefore the number of discrete rays required 
can be obtained by connecting the transmitter 
to all the cubes at the fringe of the scenarios 
(Lai et al., 2009), which is:
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Nfringe = 2Nx Ny + 2(Nz − 2)(Nx + Ny − 2)

where:

N is the number of discrete rays.

Nx, Ny and Nz are the number of cubes in dimen-
sion X, Y and Z respectively.

This formula ensures no pixels are miss-
ing due to angular dispersion of ray launching 
(Lai et al., 2009) from component LOS. The 
use of such ray launching mechanism is useful 
in distribution of rays. Nfringe is the number of 
discrete rays launched by LOS. Suppose the 
transmitter is placed in cubic position (Tx, Ty, 

Tz), the distance function D(x1, y1, z1, x2, y2, z2) 
acknowledges for the number of cubes that have 
to be checked on a particular discrete ray starting 
from (x1, y1, z1) and the ending at position (x2, 
y2, z2) (one of the fringe cubes). The maximum 
value of D is obtained if there is no obstacle 
found along the discrete ray being checked. In 
this case, D can be calculated as:

D(x1, y1, z1, x2, y2, z2) = max (|x1− x2|, |y1− y2|, 
|z1− z2|)	

The worst case for LOS occurs if it is an 
empty scenario (free space). Every single cube 
has to be checked. In this case, Nbuildings = 0, Clos 
can be roughly approximated to:

Figure 1. Structures of the ray launching model
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where:

xi, yi, zi represents the cube coordinates of fringe 
at index i.

Nlos denotes the number of secondary cubes 
obtained via checking cubes on discrete rays 
if there are obstacles.
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where:

xi, yi, and zi represents the cube coordinates of 
fringe at index i.

	

For indoor scenarios, Cvd = 0 because 
component VD (for rooftop diffractions) is not 
activated. For outdoor scenarios, Nvd represents 
the number of cubes that are checked by VD 
and can be approximated as:
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=
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( )
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where:

D is assumed to reach its maximum value (no 
obstacles along the discrete ray).

For each cube in Nvd, a discrete scan-line 
is launched from the transmitter. The building 
blocks between these two cubes are checked. 
Cvd can thus be approximated by:

C C T T T x y zvd vd scan x y z i i i

i

Nvd

= −

=
∑ ( , , , , , )
1

	

where:

xi, yi, zi represents the cube coordinates at index 
i being checked.

The procedure Cvd-scan is to check the number 
of rooftop diffractions. In the worst case, each 
scan-line involves multiple visibility checks 
between two building blocks which are costly. 
In this case, the computation complexity can 
be approximated by counting the number of 
checks and their corresponding ray lengths.

C Li
i

N

vd-scan

checks



=
∑
1

	

where:

Nchecks represents the number of visibility checks.

Li represents length (the number of cubes) on 
discrete ray segment i.

However, due to caching techniques and the 
intelligence of using geometry to avoid possible 
checks, Cvd-scan can be often be reduced to the 
complexity of constant O(1).

IRLA incorporates the engine HRD to 
virtually launch and follow discrete rays. The 
number of rays is denoted as Nlos, which is 
obtained from the LOS component. Depending 
on the complexity of scenario, current signal 
strength carried by discrete rays, the threshold 
and the number of ray iterations, the complexity 
varies from constant to exponentials i.e. the ray 
generates many secondary diffraction rays or a 
reflection ray. This can be greatly accelerated by 
the intelligent marking scheme; which avoids 
double marking and angular dispersion. Chrd 
can be approximated to.
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where:

Chrd-ray(i) returns the computational complexity 
of discrete ray i.

Pre-calculation Cpre and post-processing 
Cpost usually involve operations on the entire 
discrete data set. In this case, Cpre and Cpost can 
be approximated to NxNyNz. The complexity of 
C is calculated based on one transmitter. Given 
n transmitters, the complexity can be sum to 

Ci
i

n

=∑ 1
.

Parallelization

The components prototype of the IRLA model 
has been depicted in Figure 1. The HRD and 
VD components are dependent on the discrete 
data set but both can be executed in parallel. The 
outputs of these two components are merged 
and a post-processing procedure is carried. 
Since these two components are most time-
consuming out of all other IRLA components, 
parallelization via splitting data or instructions 
has to be performed so that overall speed up 
can be observed. From the micro aspects of 
the view, parallelization can be possible even 
within components, e.g., HRD can easily be 
parallelized by distributing the rays among 
processors. These two possibilities offer speed 
up in the following two manners:

Single-Instruction-Multiple-Data (SIMD) (Sil-
berschatz & Galvin, 2006): From a micro 
aspect, computation-intense components 
can be parallelized via splitting the data. 
Each individual processor shares the same 
instructions but performs calculations on 
different portions of data (e.g. different 
rays). This can be efficiently and advan-
tageously applied to components that 
are easily- parallelizable. For example, 
the inverse operation of an image can 

be parallelized by cutting images into 
pieces that are sent to parallel processors. 
The IRLA model contains such similar 
components. For example, the calculation 
of HRD can be narrowed down to trace 
each discrete ray that can be treated in 
parallel. However, this approach requires 
different specific treatment for different 
components (i.e. parallelization imple-
mentation is different). A significant 
parallelization speedup is often gained 
when this approach is employed on 
data-intense components. In most of the 
cases, the data split causes the problem of 
simultaneously accessing the same piece 
of information by parallel objects/threads. 
Therefore, the success of this approach 
depends on the implementation of locks 
to critical sessions (i.e. a lock prevents 
other parallel objects/threads accessing 
important/critical information).

Multiple-Instruction-Multiple-Data (MIMD) 
(Bisseling, 2004): From a macro aspect, 
different components can be scheduled 
on different processors, e.g., one or more 
processors handle HRD while at the same 
time the others handle VD. If two or more 
components are independent from each 
other, this approach introduces a light-
weight (as compared to SIMD approach) 
parallelization technique. Independent 
models can be scheduled to different pro-
cessors for computation simultaneously. 
However, if the running time from these 
models is largely different, some proces-
sors will be kept idle because usually a 
barrier is used. This can be avoided by 
continuous data/instructions fetch from 
a central node (for example, job manager 
or resource scheduler in distributed grid 
environment). However, this will increase 
the complexity and may increase the need 
of communication overhead.

Parallelization can be combined by both 
SIMD and MIMD approaches, which introduces 
a two-level parallelization scheme. For example, 
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some faster processors target more data-intense 
components and the rest are handled by slower 
processors (MIMD), thus processors are virtu-
ally grouped into two. Inside each group, the 
second level of parallelization (SIMD) can be 
applied. Finally, the results from both groups are 
merged. This is advantageous because it is more 
grid like and can be easily/slightly modified to 
suit a distributed grid environment.

Figures 2(a) and 2(b) display the overall paral-
lel model of IRLA with and without a job man-
ager respectively. A job manager is a scheduler 
that is responsible for deploying computation 
to available work nodes. If no job manager is 
used, worker nodes have to be manually given 
in the first place. This scheme is usually used 
within a cluster; which is locally limited and not 
flexible to extend. Without the central control of 
the job manager, the communication between 
user’s node (N0) and work nodes (from N1 to Nn) 
are visible. In Figure 2(a), stage a represents the 
messages sent from user’s node to work nodes. 
b corresponds to the stage where work nodes 
carry the parallel computation. c corresponds 
to the stage where all work nodes are stopped 
by a barrier. d corresponds to the stage where 
results are collected from work nodes and 
merged. Finally, at stage e, the results are sent 
to user’s node. By contrast, if a job manager is 
used, N0 is only visible to the job manager. In 
Figure 2(b), stage b, c and d are the similar to 
the stages in Figure 2(a) except that the results 
are sent to job manager instead of user’s node. 

This scheme is often used in scalable and dis-
tributed grid environment (Foster & Kesselman, 
2003) where the number of work nodes can be 
easily extended.

Multithreading

In general, more threads increase the probability 
of resource competition. But this can be reduced 
by proper assignment of parallel sub-tasks. For 
example, the total number of tasks for VD and 
HRD can be determined before-hand. Each 
thread obtains a piece of the computation task. 
In order to reduce the conflict, threads handle 
pieces of rays that are far located, i.e., discrete 
rays are separated (greater than a resolution 
pixel) and unlikely to conflict with each other.

The computers have been equipped with 
multi-cores technology; which shares the 
memory via a high-speed system bus (Silber-
schatz & Galvin, 2006). This enables efficient 
message exchange between threads. The static 
data distribution scheme for threads can be 
described as follows.

Given the total number of jobs (e.g. discrete 
rays) n (N1 to Nn), and the number of threads to 
be used is represented by T (T1 to Tt). Assume 
each thread obtains approximately equal size 
of jobs, the size of jobs can be calculated by 
J = N / P. Assume adjacent jobs (Ni and Ni+1) 
represent adjacent rays. Define indices j = 
(i − 1)J + 1 and k = j + 1. Hence, each thread 
Ti obtains an array of jobs from Nj to Nk. This 
approach is easy to implement but has the disad-

Figure 2. Parallel IRLA with & without job manager
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vantage of keeping threads idle due to unequal 
computation time. For example, some threads 
may finish computations early and they have 
to be kept waiting until the rest of the threads 
have finished. In order to maximize CPU 
computation usage, more threads have to be 
created. However, this will lead to the increase 
of resource competition among threads and will 
possibly slow down computation. To solve this, 
a flexible and dynamic data distribution method 
is proposed, which eliminates the problem and 
is far more efficient.

Like static data distribution scheme, threads 
are assigned with a start index and the number of 
jobs to compute based on the total job number 
and the number of threads. However, the total 
number of jobs for each thread is not fixed in 
the dynamic distribution scheme. Threads con-
tinuously fetch next available job index until 
all computation jobs have been computed. The 
total job indices are treated as a virtual circular 
queue, as displayed in Figure 3. In order to 
reduce the possibility of resource competition 
from threads, continuous blocks of job indices 
are assigned to threads. Since the memory is 
effectively accessed by threads, synchronization 
techniques such as semaphores (Silberschatz 
& Galvin, 2006) are employed. Threads are 
computing simultaneously and when each job 
index is finished, a pointer indicating next job 
for each thread is incrementing. The current job 
index is checked if being locked by other threads 
and if it has been computed. In this case, each 
thread will not be kept waiting unless there are 
no more jobs. It was verified by experiments 
that (Tabel 1, using 3 threads on T9300, 4GB 
RAM), on average, this parallelization scheme 
yields from 140% to 160% speedup over static 
data distribution scheme depending on the sce-
narios. The number of threads that is considered 

optimal in practice can be set to the number of 
physical cores because nearly all the time all 
the threads are active, which can be mapped 
to each core.

POP-C++

Parallel Object-oriented Programming in C++ 
(POP-C++) is a parallel-object oriented pro-
gramming language in C++ (Nguyen, 2004). 
POPC++ is an extension of C++ which makes 
it easy to program parallel applications. It elimi-
nates the need to explicitly invoke and handle 
message-passing between distributed nodes by 
introducing a parallel object model. All com-
munication is handled via implicit object calls; 
which makes it efficient and flexible. Parallel 
objects represented in POP-C++ (Nguyen & 
Kuonen, 2007) are logical independent but can 
be geographically distributed. This provides 
parallelism via asynchronous methods invoca-
tion (asynchronous methods return immediately 
upon invocation).

Objects created by the POP-C++ runtime 
system carry the computation in parallel. There 
are two major schemes.

The first scheme is to create a central node 
(manager); which is responsible for splitting the 
data/instructions to available nodes and wait 
for the returned results. This can be considered 
as a flexible master-worker scheme where 
the master node is in control of job splitting, 
scheduling and data merging. This scheme leads 
to a large amount of communication because 
message-passing to send and receive results 
between master and worker nodes have to be 
considered. However, data splitting is dynami-
cally accomplished at runtime, which is efficient 
because worker nodes following send/receive 
principle can largely avoid the idle processors.

Figure 3. Dynamic data distribution of multithreading
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The second scheme eliminates the require-
ment for a central control. At the first stage, 
computation tasks are divided according to 
available nodes’ capability (power, memory 
etc). Each node has been assigned for a piece 
of work. The nodes start computation. They 
send back results to the assigned node once the 
computation finishes. This scheme has a low 
communication overhead (there is no message-
passing between work nodes). However, the 
parallel efficiency (resource utilization) largely 
depends on the static data distribution scheme. 
If faster nodes do not have a larger piece of a 
computation job, they idle and efficiency is com-
promised. Assume there are N nodes available 
during runtime and their performance indices 
P are known and calculated based on the CPU 
speed, memory and etc.

P can thus be define as:

Pi = uMi + vCi

where i is the index for nodes, u, v are the 
weighting for the scores of memory M and 
CPU speed C, respectively. A percentage p to 
represent the portion of jobs for each node can 
be calculated as:

p
P

P
i

i

i
i

N
=

=∑ 1

	

Base on pi, Node Ni can thus compute the 
portion pi of jobs and sends the results to an 
pre-assigned node which collects and merges the 
results. This scheme has no central control and 
thus can be easily extended if work nodes are 
increased. The idling time can be largely reduced 
by introducing the job splitting calculation.

In theory, IRLA can be parallelized via these 
two approaches. However, taking consideration 
of efficiency and flexibility, the parallelization 
of IRLA is accomplished via the second scheme 
described. The reasons are detailed as follows.

In a distributed grid environment (Coco, 
Laudani, & Pollicino, 2009), IRLA will benefit 
from an efficient grid resource scheduler that 
utilizes the resources.

A master-worker scheme is not flexible and 
cannot be easily adapted in a distributed grid 
environment where grid resources are usually 
dynamical. The use of a master node is inflex-
ible and has the disadvantages of high-overload 
and overhead of communication. If the master 
node is faulty, the parallel simulation would 
crash or the performance would be degraded 
until an alternate master server is set up. The 
communication overhead would slow down the 
overall calculation time if data exchange is high.

Parallelization of the Components

The main computation components of IRLA are 
LOS, VD, and HRD. Low complex components 
such as post-processing are not parallelized be-
cause simply distributing the jobs of this module 
will not improve the overall performance rather 
it will incur extra communication overhead.

The objects are created in parallel. On 
creation, they are given an ID. Building data, 
antenna data and network configurations have to 
be loaded by all objects before actual simulation 
starts. This is ensured by setting up a barrier. As 
the time of loading data can usually be trivial, 
the cost of this barrier can usually be neglected. 
Because LOS engine has a lower computation 
complexity compared to other components, it 
will only be performed fully on the node where 
the result is stored (in this case, on the master 
node), while the rest of the nodes would simply 
just obtain LOS pixels for the use of a HRD 
engine. This will avoid unnecessary communi-
cation overhead spent on trivial tasks.

The following details the parallelization 
of each components of IRLA.

Parallelization of LOS: LOS marks the visibility 
and collects direct paths from the transmit-
ter. This component has low complexity 
and nowadays can be handled very fast 
on standard PCs. This component is ex-
pected to run with full functionality at the 
node; which is used to save results but a 
more light-weighted LOS component is 
accomplished at other worker nodes. The 
modified light-weighted LOS component 
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does not calculate path loss at all and 
thus can be executed faster. However, 
at all nodes, LOS component marks the 
visibility area and collects secondary 
pixels for the HRD and VD. In this case, 
communication can be avoided and all 
processors can collect secondary cubes 
for the use of HRD.

Parallelization of VD: VD is an independent 
component mainly used for outdoor sce-
narios. The complexity of this component 
is O(n

3) (n denotes the number of border 
cubes at X-Y planes) i.e. z = 0 and (x = 0 
or x = Nx or y = 0 or y = Ny) where x, y, z 
represent the co-ordinates of cubes and 
Nx and Ny denotes the X and Y dimensions 
of scenario. By connecting the transmitter 
and these cubes, scan-lines are formed 
virtually. The principle thus can be easily 
parallelized because these scan-lines are 
independent from each other and they can 
be processed in parallel. The scan-line 
consists of building blocks comprising of 
a stack of pixels, which should be handled 
by only one scan-line. In a distributed 
environment, a processor shares global 
static information by message passing or 
accessing to a central node; which keeps 
the shared information. Message passing 
is costly and should be avoided wherever 
possible. The design of parallel IRLA is 
not centralized. The requirement to share 
global static variables is removed by a 
static data distribution scheme. In this 
case, there will be overlap of jobs assigned 
to each node because at this stage, nodes 
do not check if building blocks have been 
processed by other nodes. At the end of 
the calculations, results are sent to a node 
for collection and merged. Overlapping 
is also checked and only one piece of the 
result is considered for one building block. 
In order to avoid simultaneous access to 
the same building blocks, locks are used.

Parallelization of HRD: The number of discrete 
rays needed to be launched from the 
transmitter is known as Nfringe. As long as 

double counting is avoided, these rays can 
be considered independently, which of-
fers the parallelism. The roughly-divide-
and-solve approach as used in parallel 
VD can be also applied to HRD. Rays 
are roughly divided at the beginning of 
parallelization and they are calculated in 
independent memory space of the worker 
node. Double counting is avoided at each 
worker node. However, this approach 
does not guarantee the removal of all 
redundant pixels because rays may be 
repeatedly calculated at the worker nodes 
simply because close rays are launched at 
two nodes but there is no communication 
between them to avoid double counting. 
This can be solved at the last stage where 
results are collected at one node.

Efficiency. Assume D represents the number 
of conflicts caused by duplicated jobs 
(rays, building blocks etc) that have 
been produced due to distributed parallel 
simulation. Then smaller D leads to better 
efficiency and vice versa because dupli-
cated jobs cost unnecessary computation 
time and cause an overhead of results 
sending and merging. It is preferable 
to mark continuous rays thus they can 
be efficiently computed locally on one 
node. Distributed HRD and VD employ 
similar strategy as allocating threads. 
Approximately, suppose job space is J1 
to Jn (n denotes the total number of jobs), 
and there are P distributed processors, 
then D = P.

Assume the overall performance of IRLA 
depends on N modules noted as M1 .. MN. The 
approximate running time (percentage) for these 
modules is represented as p1, p2 .. pN. Thus,

pi
i

N
=

=∑ 1
1

The theoretical maximum speed up of Mi 
can be denoted as Si and calculated by Amdahl’s 
Formula (Bisseling, 2004). Hence max(Si), 

i ∈ 
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Figure 4. Parallel IRLA with & without communication

Figure 5. Optimization via using shared-memory

Table 1. Speedup of multithreading parallelization scheme 

Speedup Scenario

1.52 Munich

1.43 Paris



12   International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

[1, N ] gives the most important component 
(with priority) that is optimised.

Optimization. Figures 4(a) and 4(b) depict two 
structures that can be applied to parallel 
IRLA: No-communications and master-
worker schemes. The no-communication 
scheme (Figure 4(a)) does not require any 
communication between processors. All 

the results are stored on local machines 
as files and if necessary, the results are 
copied and merged after simulation. This 
eliminates the costly message-passing 
and processors are independent to each 
other. The master-worker scheme (Figure 
4(b)) requires one-time collection from 
the master node at the end of simulation, 
which may cause delay if the message-
passing takes time (if the data to send and 

Figure 6. Running time via parallelization

Figure 7. Speedup via parallelization
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receive is large). Usually, more proces-
sors to split the computation, less data is 
required to be sent from worker node at 
the end of simulation. This is due to the 
job splitting scheme, in which the total 
computations are virtualized as pieces of 
small work, which then are distributed 
among available processors.

Usually, if there are many parallel objects 
created on the same physical machine, they are 
considered as independent processors; which 
have independent memory space. This causes 
waste of memory because usually these objects 
are opening the same input data (building data, 
antenna, network parameters etc). Furthermore, 
files (resources) are treated as read-only and 

Figure 8. Run simulation on Kerrighed
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will not change during computation. Larger 
scenario (or higher resolution) will cause 
larger discrete data set, which needs to be 
loaded by each object. It will limit the perfor-
mance and the number of objects that can be 
created on the same machine. To solve this, 
shared-memory between processes are adopted 
(Figure 5). Parallel objects (processes) will 
check if the resources are available before they 
load it. And they will make the resources vis-
ible to other objects if they are created on the 
same physical machine. In this manner, mem-
ory consumption is reduced and the number of 
objects that can be created on the same machines 
is increased.

Simulations

In order to test the parallelization efficiency 
of the parallel IRLA model via multithread-
ing and distributed computing technologies, 
simulations are carried out on three platforms 
and results are analyzed. The specifications of 
machines (type A, B, C) are listed in Table 1, 
in which “Estimated power” is an estimation 
score calculated via POPC++ runtime system.

The simulation scenario is based on 
COST231-Munich (Universitat Karlshrue, n. 
d.). In this scenario, the size (Nx, Ny, Nz) is equal 
to (483, 683, 23) when the resolution is set to 
5 meter. In order to analyze the results more 
clearly, the ray-signal threshold is increased to 
250 dB, which will increase the computation 
complexity.

In order to assure a relative accurate timing 
result, simulations are required to run several 
times and the average results are adopted (Figure 
9). A simulation on the Kerrighed (1998) that 
is a distributed-shared-memory architecture is 
displayed in Figure 8.

The running time is displayed in Figure 6 
and its corresponding speedup is displayed in 
Figure 7. It is observed that multi-threaded 
simulation generally dominates the single-
threaded (the number of parallel objects is one) 
because the resources are more efficiently 
utilized by the system. However, when the 
number of threads increases, the performance 
has reached the peak and tends to degrade, 
which is limited by physical resources and 
possibly the resource competition tends to oc-
cur more often.

Figure 9. Test parallelization efficiency
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The running time can be greatly shortened 
by increasing the number of processors (the 
node specification can be found in Table 2) at 
the beginning. However, performance may 
degrade due to the unavoidable overhead for 
each object to load data and sends results at the 
end of calculations when more and more pro-
cessors are used. It has been observed that for 
some scenarios, the job distributed to each 

object is small and each object is capable of 
handling it even (because of cache hit in local 
memory). In this case, a super linear speed up 
may be observed.

It is also interesting to find that with two 
or three processors, multithreading may out-
perform distributed POPC++; which is mainly 
due to the overhead of communication or pro-

Table 2. Specification 

Type CPU (GHz) Estimated Power Cores RAM (G) OS

A (C) 3.0 5419 4 12 Fedora 10

B 2.5 4812 2 4 Ubuntu 9

Table 3. Running time of components 

Components Running Time (s) Percentage (%)

LOS 1.3 9.5

VD 2.9 21.1

HRD 8.6 62.8

Post-processing 0.9 6.6

Figure 10. Communication cost via parallelization
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cessor idling time from unfair distribution of 
jobs.

The running time of IRLA is greatly re-
duced by deploying parallel computation tasks 
to available nodes (Figure 8). It is also interest-
ing to find that distributed memory is handled 
by Kerrighed behind scenes so that all objects 
created on the cluster virtually see a global large 
memory space and they can share the same data 
easily, which consume less memory (Figure 5).

The components of IRLA are of different 
complexity. Experiments show that different 
amount of time is spent on these components. 
For example, given Munich scenario, the 
running time for LOS, VD, HRD and post-
processing is listed in Table 3. Apparently, the 
most time consuming parts are HRD and VD. It 
can be derived that the overall maximum speed 
for IRLA by parallelization is (based on the 
percentages of these components in Table 3).

1

1 0 211 0 628
0 211 0 628

( . . )
. .

− − +
+
N

	

N is the number of processors used; when 
N approaches infinity, the equation reaches 
6.21. Each component can be further optimized 
by pinpointing the most time-consuming part. 
However, experiments show that usually the 
speedup hardly approaches 6.21, which is 
reasonable because of costly message-passing 
and the overhead of loading data etc. Figure 7 
show that the maximum speedup via Kerrighed 
cluster (16 objects) is approximately 5, which 
is far less than linear speedup. The explanations 
are twofold. The first is due to communication 
overhead that nodes have to send and collect 
results. The second is due to unpredictable 
amount of job tasks (rays distribution) and hence 
the timing to finish sub-computation tasks at 
each node is different, which incur barrier 
synchronization waiting time. This varies from 
scenario to scenario but at least this experiment 
indicates the same speedup pattern observed 
on the same scenario (Figure 7).

The communication overhead (measured 
in Mega Bytes) decreases as the number of 
parallel objects grows, Figure 10 indicates that 
to some extent, when the number of processors 
employed is high, the communication over-
head can be minimized to a constant because 
the average data amount to be sent over the 
network is split into small portions which can 
be sent and received within a short time. Fur-
thermore, the total speedup has a limit because 
of the aforementioned inherent parallelization 
strategy of IRLA.

Conclusion

Ray launching is extremely time consuming in 
large scenarios. Solving angular dispersion and 
avoiding double counting have been proposed 
in previous work. Intelligent algorithms have 
been developed to accelerate the computation. 
Parallelization has been focused in this article 
where the issues related to performance etc are 
described. The multithreading and POP-C++ 
version of IRLA was developed and speedup 
was obtained (up to five times faster with sixteen 
processors). Parallelization further reduces the 
running time of IRLA and this can be further 
extended to distributed grid environment (Lai, 
Bessis, Zhang, & Clapworthy, 2007; Lai et al., 
2009) in the future work. By using POPC++ 
toolkit, computation tasks are deployed and 
performance speedup can be observed. The 
parallelization also helps to solve a more 
complex problem which may not be solved on 
a single computer, i.e., the memory may be a 
restricting factor for some large scenarios on a 
single computer.
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