
International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011 1

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Keywords:	 Intelligent Ray Launching, Network Planning, Parallelization, Propagation Prediction,
Simulation

Introduction

Propagation modeling serves as a fundamental
input in the wireless network planning and
optimization process. Especially, in order to
determine the interferences for an indoor fem-

The Development of a Parallel
Ray Launching Algorithm for
Wireless Network Planning

Zhihua Lai, University of Bedfordshire, UK

Nik Bessis, University of Bedfordshire, UK

Guillaume De La Roche, University of Bedfordshire, UK

Pierre Kuonen, University of Applied Science of Western Switzerland, Switzerland

Jie Zhang, University of Bedfordshire, UK

Gordon Clapworthy, University of Bedfordshire, UK

Abstract
Propagation modeling has attracted much interest because it plays an important role in wireless network
planning and optimization. Deterministic approaches such as ray tracing and ray launching have been in-
vestigated, however, due to the running time constraint, these approaches are still not widely used. In previ-
ous work, an intelligent ray launching algorithm, namely IRLA, has been proposed. The IRLA has proven to
be a fast and accurate algorithm and adapts to wireless network planning well. This article focuses on the
development of a parallel ray launching algorithm based on the IRLA. Simulations are implemented, and
evaluated performance shows that the parallelization greatly shortens the running time. The COST231 Munich
scenario is adopted to verify algorithm behavior in real world environments, and observed results show a 5
times increased speedup upon a 16-processor cluster. In addition, the parallelization algorithm can be easily
extended to larger scenarios with sufficient physical resources.

tocell base station with the outdoor macrocell,
accurate coverage predictions have to be ob-
tained via propagation modeling (Zhang & De
La Roche, 2010). Planning and optimization of
a wireless network usually requires simulation
of hundreds of User Equipments (UE) and the
path loss between these UEs and base stations

DOI: 10.4018/jdst.2011040101

2 International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

are obligatory to investigate the best servers
and handovers etc.

Current propagation models can be di-
vided into three categories: empirical models,
semi- deterministic and deterministic models.
Empirical models are the simplest models;
which are usually based on simple factors such
as the carrier frequency and distance. They
are extremely fast because of statistical model
environmental factors. The semi-deterministic
models are enhanced by introducing relevant
deterministic factors in the computation. Such
models provide higher accuracy than empirical
models, thus running time of semi-deterministic
models is usually realistically acceptable upon
conventional computing power, such as PCs.

The deterministic models consider envi-
ronmental factors, e.g., buildings and walls,
which are time-consuming compared to empiri-
cal and semi-deterministic models. However,
the deterministic models provide the highest
accuracy out of these categories.

Ray-based methods belong to determin-
istic models and they are based on geometry
path finding algorithms (Haslett, 2008). Ray-
based methods in general are divided into two
subcategories: ray tracing and ray launching.
Ray tracing adopts a backward path search
technique, which guarantees that exact paths
between transmitters and receivers can be
computed (Glassner, 1989). Ray tracing offers
high accuracy but it is extremely time consum-
ing. The complexity grows exponentially with
the number of objects and the maximum ray
iterations (Nagy, Dady, & Farkasvolgyi, 2009).
Ray tracing is used for precise point-to-point
predictions. Several acceleration techniques
such as pre-processing (Wolfle, Gschwendtner,
& Landstorfer, 1997) or the use of a General
Purpose Graphic Processing Unit (GPGPU)
(Rick & Mathar, 2007) have been proposed. The
performance of ray tracing is usually limited
by the inherent complex ray-object intersection
tests and many techniques have been proposed
over the past years to speed up computation
(Degli-Esposti, Fuschini, Vitucci, & Falcia-
secca, 2009). Ray launching emits the rays from
sources; which are separated by a small angle.

This method is efficient in an area prediction
because the rays are actively followed. However,
this approach leads to two inherent problems.
The first problem is angular dispersion of ray
launching. The distant pixels are less likely to
be visited by rays because rays disperse as they
are propagated. For example, a distant small
object may be missed by rays because a fixed
angle is used to separate rays. Secondly, the ray
double counting arises when a sample pixel is
marked twice by the same rays, which should
be avoided because it reduces the accuracy of
ray launching. Ray launching is usually faster
than ray tracing with less accuracy. The com-
plexity of ray launching grows linearly with the
number of objects and maximum ray iteration
(Nagy et al., 2009).

In (Lai, Bessis, De La Roche, Song, Zhang,
& Clapworthy, 2009), a new model based on
discrete ray launching, namely the Intelligent
Ray Launching Algorithm (IRLA), has been
proposed to obtain fast propagation prediction
(path loss and multipath components) within
a realistic time scale. In (Lai et al., 2010), the
authors extended this model to indoor predic-
tion, which accurately predicts the multipath
propagation in indoor environment. The IRLA
model has been validated with measurement
campaigns (Lai et al., 2010), which has led to
the effective development for network applica-
tions. In (Lai et al., 2009), the authors proposed
an efficient method to improve the accuracy of
IRLA by solving angular dispersion problem
of ray launching. This method has effectively
improved the accuracy and avoids ray double
counting. In (Lai et al., 2009), a parallel algo-
rithm of IRLA is implemented based on a toolkit
named Parallel Object-oriented Programming
in C++ (POP-C++). Preliminary promising
results have been presented, which show that
parallel IRLA has improved the performance.
This article is an extension of this work: is-
sues related to performance and accuracy will
be further addressed in this work. This article
contributes to present a parallel propagation
algorithm that accelerates the time-consuming
prediction. The components of the IRLA model
are analyzed so that the most time-consuming

International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011 3

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

components are parallelized. Results show that
with 16 processors, the performance can reach
up to 5 for certain scenarios.

The rest of this article is organized as
follows. At First, the IRLA model is briefly
introduced. Secondly, the complexity of IRLA
is studied, which serves as the fundamentals
to develop the efficient parallel IRLA model.
Then, the issues related to parallelization are
detailed, which is followed by results that
conclude this work.

The Ray Launching
Model: IRLA

IRLA is a discrete ray launching model that aims
to provide highly improved prediction in terms
of path loss and multipath components for wire-
less propagation prediction within a short time.
In outdoor urban scenarios, a specific procedure
has been developed to accelerate the computa-
tions of urban rooftop diffractions. IRLA can
be easily extended to indoor, indoor-to-outdoor
and outdoor-to-indoor scenarios due to the well
designed mechanisms to avoid duplication of
rays and angular dispersion (Lai et al., 2009).
IRLA is based on discrete cubic data set, which
can be extracted from vector building data.
Typically, building data for outdoor scenarios
are simplified to 2.5-D which are described as
polygon-shaped buildings with height informa-
tion. For outdoor scenarios, the IRLA separates
roof-top diffractions from horizontal diffrac-
tions and reflections. The algorithm quickly
checks the number of roof-top diffractions
required between the transmitter and receiver.
The components of IRLA and their relationship
are depicted in Figure 1. Given the input data
(building, antenna, and network configuration),
the discrete data set is built, based on which
Line-of-Sight (LOS) component obtains sec-
ondary pixels for reflections and diffractions.

Horizontal-Reflection-Diffraction (HRD)
and Vertical- Diffraction (VD) are independent
of each other and thus can be run in parallel.
When these two components are completed, a

post-processing procedure is carried out (such
as antenna pattern adjustment and indoor cov-
erage prediction) and final outputs include path
loss and multipath components.

Computational Complexity

The discrete data set size is (Nx, Ny, Nz), which
represents the number of cubes for X, Y, and
Z dimensions respectively. The numbers of
building cubes are known as Nground, Nwall and
Nroof, which represent the number of building
ground, walls and roofs respectively. Therefore
the total number of representing buildings can
be denoted as:

Nbuildings=Nground ∪ Nwall ∪ Nroof

For example, there are cubes; which are
joint edges of walls and roofs. Nbuildings depends
on the size of the scenario, the number of build-
ings and the resolution used for building the
discrete data. Nbuildings usually impacts on the
computation complexity. For example, greater
Nbuildings causes larger computational complexity
and vice versa.

The complexity of IRLA thus can be mod-
eled by five parts: Cpre, Cpost, Clos, Cvd and Chrd,
which represent the computation complexity
for pre-calculation, post-processing, component
LOS, VD and HRD respectively. Let C be the
total complexity of IRLA, then it is can be
obtained as following:

C C C C C C= + + + +los vd hrd pre post 	

Clos can be approximated based on the
number of cubes on the fringe of scenario. The
process of IRLA prediction starts with launching
rays in all 3-D directions. Based on the discrete
data set, the resolution and the number of cubes
along each dimension (X, Y and Z) are known.
Therefore the number of discrete rays required
can be obtained by connecting the transmitter
to all the cubes at the fringe of the scenarios
(Lai et al., 2009), which is:

4 International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Nfringe = 2Nx Ny + 2(Nz − 2)(Nx + Ny − 2)

where:

N is the number of discrete rays.

Nx, Ny and Nz are the number of cubes in dimen-
sion X, Y and Z respectively.

This formula ensures no pixels are miss-
ing due to angular dispersion of ray launching
(Lai et al., 2009) from component LOS. The
use of such ray launching mechanism is useful
in distribution of rays. Nfringe is the number of
discrete rays launched by LOS. Suppose the
transmitter is placed in cubic position (Tx, Ty,

Tz), the distance function D(x1, y1, z1, x2, y2, z2)
acknowledges for the number of cubes that have
to be checked on a particular discrete ray starting
from (x1, y1, z1) and the ending at position (x2,
y2, z2) (one of the fringe cubes). The maximum
value of D is obtained if there is no obstacle
found along the discrete ray being checked. In
this case, D can be calculated as:

D(x1, y1, z1, x2, y2, z2) = max (|x1− x2|, |y1− y2|,
|z1− z2|)	

The worst case for LOS occurs if it is an
empty scenario (free space). Every single cube
has to be checked. In this case, Nbuildings = 0, Clos
can be roughly approximated to:

Figure 1. Structures of the ray launching model

International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011 5

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

C D T T T x y zx y z i i i

i

N

los

fringe

=
=
∑ (, , , , ,)
1

	

where:

xi, yi, zi represents the cube coordinates of fringe
at index i.

Nlos denotes the number of secondary cubes
obtained via checking cubes on discrete rays
if there are obstacles.

N H T T T x y zx y z i i i

i

N

los

fringe

=
=
∑ (, , , , ,)
1

	

where:

xi, yi, and zi represents the cube coordinates of
fringe at index i.

	

For indoor scenarios, Cvd = 0 because
component VD (for rooftop diffractions) is not
activated. For outdoor scenarios, Nvd represents
the number of cubes that are checked by VD
and can be approximated as:

N D T T T x x z Nvd x y z i y i z

i

Nx Ny

=
=

+ −

∑ (, , , , ,)
()

1

2 2

	

where:

D is assumed to reach its maximum value (no
obstacles along the discrete ray).

For each cube in Nvd, a discrete scan-line
is launched from the transmitter. The building
blocks between these two cubes are checked.
Cvd can thus be approximated by:

C C T T T x y zvd vd scan x y z i i i

i

Nvd

= −

=
∑ (, , , , ,)
1

	

where:

xi, yi, zi represents the cube coordinates at index
i being checked.

The procedure Cvd-scan is to check the number
of rooftop diffractions. In the worst case, each
scan-line involves multiple visibility checks
between two building blocks which are costly.
In this case, the computation complexity can
be approximated by counting the number of
checks and their corresponding ray lengths.

C Li
i

N

vd-scan

checks



=
∑
1

	

where:

Nchecks represents the number of visibility checks.

Li represents length (the number of cubes) on
discrete ray segment i.

However, due to caching techniques and the
intelligence of using geometry to avoid possible
checks, Cvd-scan can be often be reduced to the
complexity of constant O(1).

IRLA incorporates the engine HRD to
virtually launch and follow discrete rays. The
number of rays is denoted as Nlos, which is
obtained from the LOS component. Depending
on the complexity of scenario, current signal
strength carried by discrete rays, the threshold
and the number of ray iterations, the complexity
varies from constant to exponentials i.e. the ray
generates many secondary diffraction rays or a
reflection ray. This can be greatly accelerated by
the intelligent marking scheme; which avoids
double marking and angular dispersion. Chrd
can be approximated to.

6 International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

C C i
i

N

hrd hrd-ray

los

=
=
∑ ()
1

	

where:

Chrd-ray(i) returns the computational complexity
of discrete ray i.

Pre-calculation Cpre and post-processing
Cpost usually involve operations on the entire
discrete data set. In this case, Cpre and Cpost can
be approximated to NxNyNz. The complexity of
C is calculated based on one transmitter. Given
n transmitters, the complexity can be sum to

Ci
i

n

=∑ 1
.

Parallelization

The components prototype of the IRLA model
has been depicted in Figure 1. The HRD and
VD components are dependent on the discrete
data set but both can be executed in parallel. The
outputs of these two components are merged
and a post-processing procedure is carried.
Since these two components are most time-
consuming out of all other IRLA components,
parallelization via splitting data or instructions
has to be performed so that overall speed up
can be observed. From the micro aspects of
the view, parallelization can be possible even
within components, e.g., HRD can easily be
parallelized by distributing the rays among
processors. These two possibilities offer speed
up in the following two manners:

Single-Instruction-Multiple-Data (SIMD) (Sil-
berschatz & Galvin, 2006): From a micro
aspect, computation-intense components
can be parallelized via splitting the data.
Each individual processor shares the same
instructions but performs calculations on
different portions of data (e.g. different
rays). This can be efficiently and advan-
tageously applied to components that
are easily- parallelizable. For example,
the inverse operation of an image can

be parallelized by cutting images into
pieces that are sent to parallel processors.
The IRLA model contains such similar
components. For example, the calculation
of HRD can be narrowed down to trace
each discrete ray that can be treated in
parallel. However, this approach requires
different specific treatment for different
components (i.e. parallelization imple-
mentation is different). A significant
parallelization speedup is often gained
when this approach is employed on
data-intense components. In most of the
cases, the data split causes the problem of
simultaneously accessing the same piece
of information by parallel objects/threads.
Therefore, the success of this approach
depends on the implementation of locks
to critical sessions (i.e. a lock prevents
other parallel objects/threads accessing
important/critical information).

Multiple-Instruction-Multiple-Data (MIMD)
(Bisseling, 2004): From a macro aspect,
different components can be scheduled
on different processors, e.g., one or more
processors handle HRD while at the same
time the others handle VD. If two or more
components are independent from each
other, this approach introduces a light-
weight (as compared to SIMD approach)
parallelization technique. Independent
models can be scheduled to different pro-
cessors for computation simultaneously.
However, if the running time from these
models is largely different, some proces-
sors will be kept idle because usually a
barrier is used. This can be avoided by
continuous data/instructions fetch from
a central node (for example, job manager
or resource scheduler in distributed grid
environment). However, this will increase
the complexity and may increase the need
of communication overhead.

Parallelization can be combined by both
SIMD and MIMD approaches, which introduces
a two-level parallelization scheme. For example,

International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011 7

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

some faster processors target more data-intense
components and the rest are handled by slower
processors (MIMD), thus processors are virtu-
ally grouped into two. Inside each group, the
second level of parallelization (SIMD) can be
applied. Finally, the results from both groups are
merged. This is advantageous because it is more
grid like and can be easily/slightly modified to
suit a distributed grid environment.

Figures 2(a) and 2(b) display the overall paral-
lel model of IRLA with and without a job man-
ager respectively. A job manager is a scheduler
that is responsible for deploying computation
to available work nodes. If no job manager is
used, worker nodes have to be manually given
in the first place. This scheme is usually used
within a cluster; which is locally limited and not
flexible to extend. Without the central control of
the job manager, the communication between
user’s node (N0) and work nodes (from N1 to Nn)
are visible. In Figure 2(a), stage a represents the
messages sent from user’s node to work nodes.
b corresponds to the stage where work nodes
carry the parallel computation. c corresponds
to the stage where all work nodes are stopped
by a barrier. d corresponds to the stage where
results are collected from work nodes and
merged. Finally, at stage e, the results are sent
to user’s node. By contrast, if a job manager is
used, N0 is only visible to the job manager. In
Figure 2(b), stage b, c and d are the similar to
the stages in Figure 2(a) except that the results
are sent to job manager instead of user’s node.

This scheme is often used in scalable and dis-
tributed grid environment (Foster & Kesselman,
2003) where the number of work nodes can be
easily extended.

Multithreading

In general, more threads increase the probability
of resource competition. But this can be reduced
by proper assignment of parallel sub-tasks. For
example, the total number of tasks for VD and
HRD can be determined before-hand. Each
thread obtains a piece of the computation task.
In order to reduce the conflict, threads handle
pieces of rays that are far located, i.e., discrete
rays are separated (greater than a resolution
pixel) and unlikely to conflict with each other.

The computers have been equipped with
multi-cores technology; which shares the
memory via a high-speed system bus (Silber-
schatz & Galvin, 2006). This enables efficient
message exchange between threads. The static
data distribution scheme for threads can be
described as follows.

Given the total number of jobs (e.g. discrete
rays) n (N1 to Nn), and the number of threads to
be used is represented by T (T1 to Tt). Assume
each thread obtains approximately equal size
of jobs, the size of jobs can be calculated by
J = N / P. Assume adjacent jobs (Ni and Ni+1)
represent adjacent rays. Define indices j =
(i − 1)J + 1 and k = j + 1. Hence, each thread
Ti obtains an array of jobs from Nj to Nk. This
approach is easy to implement but has the disad-

Figure 2. Parallel IRLA with & without job manager

8 International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

vantage of keeping threads idle due to unequal
computation time. For example, some threads
may finish computations early and they have
to be kept waiting until the rest of the threads
have finished. In order to maximize CPU
computation usage, more threads have to be
created. However, this will lead to the increase
of resource competition among threads and will
possibly slow down computation. To solve this,
a flexible and dynamic data distribution method
is proposed, which eliminates the problem and
is far more efficient.

Like static data distribution scheme, threads
are assigned with a start index and the number of
jobs to compute based on the total job number
and the number of threads. However, the total
number of jobs for each thread is not fixed in
the dynamic distribution scheme. Threads con-
tinuously fetch next available job index until
all computation jobs have been computed. The
total job indices are treated as a virtual circular
queue, as displayed in Figure 3. In order to
reduce the possibility of resource competition
from threads, continuous blocks of job indices
are assigned to threads. Since the memory is
effectively accessed by threads, synchronization
techniques such as semaphores (Silberschatz
& Galvin, 2006) are employed. Threads are
computing simultaneously and when each job
index is finished, a pointer indicating next job
for each thread is incrementing. The current job
index is checked if being locked by other threads
and if it has been computed. In this case, each
thread will not be kept waiting unless there are
no more jobs. It was verified by experiments
that (Tabel 1, using 3 threads on T9300, 4GB
RAM), on average, this parallelization scheme
yields from 140% to 160% speedup over static
data distribution scheme depending on the sce-
narios. The number of threads that is considered

optimal in practice can be set to the number of
physical cores because nearly all the time all
the threads are active, which can be mapped
to each core.

POP-C++

Parallel Object-oriented Programming in C++
(POP-C++) is a parallel-object oriented pro-
gramming language in C++ (Nguyen, 2004).
POPC++ is an extension of C++ which makes
it easy to program parallel applications. It elimi-
nates the need to explicitly invoke and handle
message-passing between distributed nodes by
introducing a parallel object model. All com-
munication is handled via implicit object calls;
which makes it efficient and flexible. Parallel
objects represented in POP-C++ (Nguyen &
Kuonen, 2007) are logical independent but can
be geographically distributed. This provides
parallelism via asynchronous methods invoca-
tion (asynchronous methods return immediately
upon invocation).

Objects created by the POP-C++ runtime
system carry the computation in parallel. There
are two major schemes.

The first scheme is to create a central node
(manager); which is responsible for splitting the
data/instructions to available nodes and wait
for the returned results. This can be considered
as a flexible master-worker scheme where
the master node is in control of job splitting,
scheduling and data merging. This scheme leads
to a large amount of communication because
message-passing to send and receive results
between master and worker nodes have to be
considered. However, data splitting is dynami-
cally accomplished at runtime, which is efficient
because worker nodes following send/receive
principle can largely avoid the idle processors.

Figure 3. Dynamic data distribution of multithreading

International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011 9

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

The second scheme eliminates the require-
ment for a central control. At the first stage,
computation tasks are divided according to
available nodes’ capability (power, memory
etc). Each node has been assigned for a piece
of work. The nodes start computation. They
send back results to the assigned node once the
computation finishes. This scheme has a low
communication overhead (there is no message-
passing between work nodes). However, the
parallel efficiency (resource utilization) largely
depends on the static data distribution scheme.
If faster nodes do not have a larger piece of a
computation job, they idle and efficiency is com-
promised. Assume there are N nodes available
during runtime and their performance indices
P are known and calculated based on the CPU
speed, memory and etc.

P can thus be define as:

Pi = uMi + vCi

where i is the index for nodes, u, v are the
weighting for the scores of memory M and
CPU speed C, respectively. A percentage p to
represent the portion of jobs for each node can
be calculated as:

p
P

P
i

i

i
i

N
=

=∑ 1

	

Base on pi, Node Ni can thus compute the
portion pi of jobs and sends the results to an
pre-assigned node which collects and merges the
results. This scheme has no central control and
thus can be easily extended if work nodes are
increased. The idling time can be largely reduced
by introducing the job splitting calculation.

In theory, IRLA can be parallelized via these
two approaches. However, taking consideration
of efficiency and flexibility, the parallelization
of IRLA is accomplished via the second scheme
described. The reasons are detailed as follows.

In a distributed grid environment (Coco,
Laudani, & Pollicino, 2009), IRLA will benefit
from an efficient grid resource scheduler that
utilizes the resources.

A master-worker scheme is not flexible and
cannot be easily adapted in a distributed grid
environment where grid resources are usually
dynamical. The use of a master node is inflex-
ible and has the disadvantages of high-overload
and overhead of communication. If the master
node is faulty, the parallel simulation would
crash or the performance would be degraded
until an alternate master server is set up. The
communication overhead would slow down the
overall calculation time if data exchange is high.

Parallelization of the Components

The main computation components of IRLA are
LOS, VD, and HRD. Low complex components
such as post-processing are not parallelized be-
cause simply distributing the jobs of this module
will not improve the overall performance rather
it will incur extra communication overhead.

The objects are created in parallel. On
creation, they are given an ID. Building data,
antenna data and network configurations have to
be loaded by all objects before actual simulation
starts. This is ensured by setting up a barrier. As
the time of loading data can usually be trivial,
the cost of this barrier can usually be neglected.
Because LOS engine has a lower computation
complexity compared to other components, it
will only be performed fully on the node where
the result is stored (in this case, on the master
node), while the rest of the nodes would simply
just obtain LOS pixels for the use of a HRD
engine. This will avoid unnecessary communi-
cation overhead spent on trivial tasks.

The following details the parallelization
of each components of IRLA.

Parallelization of LOS: LOS marks the visibility
and collects direct paths from the transmit-
ter. This component has low complexity
and nowadays can be handled very fast
on standard PCs. This component is ex-
pected to run with full functionality at the
node; which is used to save results but a
more light-weighted LOS component is
accomplished at other worker nodes. The
modified light-weighted LOS component

10 International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

does not calculate path loss at all and
thus can be executed faster. However,
at all nodes, LOS component marks the
visibility area and collects secondary
pixels for the HRD and VD. In this case,
communication can be avoided and all
processors can collect secondary cubes
for the use of HRD.

Parallelization of VD: VD is an independent
component mainly used for outdoor sce-
narios. The complexity of this component
is O(n

3) (n denotes the number of border
cubes at X-Y planes) i.e. z = 0 and (x = 0
or x = Nx or y = 0 or y = Ny) where x, y, z
represent the co-ordinates of cubes and
Nx and Ny denotes the X and Y dimensions
of scenario. By connecting the transmitter
and these cubes, scan-lines are formed
virtually. The principle thus can be easily
parallelized because these scan-lines are
independent from each other and they can
be processed in parallel. The scan-line
consists of building blocks comprising of
a stack of pixels, which should be handled
by only one scan-line. In a distributed
environment, a processor shares global
static information by message passing or
accessing to a central node; which keeps
the shared information. Message passing
is costly and should be avoided wherever
possible. The design of parallel IRLA is
not centralized. The requirement to share
global static variables is removed by a
static data distribution scheme. In this
case, there will be overlap of jobs assigned
to each node because at this stage, nodes
do not check if building blocks have been
processed by other nodes. At the end of
the calculations, results are sent to a node
for collection and merged. Overlapping
is also checked and only one piece of the
result is considered for one building block.
In order to avoid simultaneous access to
the same building blocks, locks are used.

Parallelization of HRD: The number of discrete
rays needed to be launched from the
transmitter is known as Nfringe. As long as

double counting is avoided, these rays can
be considered independently, which of-
fers the parallelism. The roughly-divide-
and-solve approach as used in parallel
VD can be also applied to HRD. Rays
are roughly divided at the beginning of
parallelization and they are calculated in
independent memory space of the worker
node. Double counting is avoided at each
worker node. However, this approach
does not guarantee the removal of all
redundant pixels because rays may be
repeatedly calculated at the worker nodes
simply because close rays are launched at
two nodes but there is no communication
between them to avoid double counting.
This can be solved at the last stage where
results are collected at one node.

Efficiency. Assume D represents the number
of conflicts caused by duplicated jobs
(rays, building blocks etc) that have
been produced due to distributed parallel
simulation. Then smaller D leads to better
efficiency and vice versa because dupli-
cated jobs cost unnecessary computation
time and cause an overhead of results
sending and merging. It is preferable
to mark continuous rays thus they can
be efficiently computed locally on one
node. Distributed HRD and VD employ
similar strategy as allocating threads.
Approximately, suppose job space is J1
to Jn (n denotes the total number of jobs),
and there are P distributed processors,
then D = P.

Assume the overall performance of IRLA
depends on N modules noted as M1 .. MN. The
approximate running time (percentage) for these
modules is represented as p1, p2 .. pN. Thus,

pi
i

N
=

=∑ 1
1

The theoretical maximum speed up of Mi
can be denoted as Si and calculated by Amdahl’s
Formula (Bisseling, 2004). Hence max(Si),

i ∈

International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011 11

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Figure 4. Parallel IRLA with & without communication

Figure 5. Optimization via using shared-memory

Table 1. Speedup of multithreading parallelization scheme

Speedup Scenario

1.52 Munich

1.43 Paris

12 International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

[1, N] gives the most important component
(with priority) that is optimised.

Optimization. Figures 4(a) and 4(b) depict two
structures that can be applied to parallel
IRLA: No-communications and master-
worker schemes. The no-communication
scheme (Figure 4(a)) does not require any
communication between processors. All

the results are stored on local machines
as files and if necessary, the results are
copied and merged after simulation. This
eliminates the costly message-passing
and processors are independent to each
other. The master-worker scheme (Figure
4(b)) requires one-time collection from
the master node at the end of simulation,
which may cause delay if the message-
passing takes time (if the data to send and

Figure 6. Running time via parallelization

Figure 7. Speedup via parallelization

International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011 13

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

receive is large). Usually, more proces-
sors to split the computation, less data is
required to be sent from worker node at
the end of simulation. This is due to the
job splitting scheme, in which the total
computations are virtualized as pieces of
small work, which then are distributed
among available processors.

Usually, if there are many parallel objects
created on the same physical machine, they are
considered as independent processors; which
have independent memory space. This causes
waste of memory because usually these objects
are opening the same input data (building data,
antenna, network parameters etc). Furthermore,
files (resources) are treated as read-only and

Figure 8. Run simulation on Kerrighed

14 International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

will not change during computation. Larger
scenario (or higher resolution) will cause
larger discrete data set, which needs to be
loaded by each object. It will limit the perfor-
mance and the number of objects that can be
created on the same machine. To solve this,
shared-memory between processes are adopted
(Figure 5). Parallel objects (processes) will
check if the resources are available before they
load it. And they will make the resources vis-
ible to other objects if they are created on the
same physical machine. In this manner, mem-
ory consumption is reduced and the number of
objects that can be created on the same machines
is increased.

Simulations

In order to test the parallelization efficiency
of the parallel IRLA model via multithread-
ing and distributed computing technologies,
simulations are carried out on three platforms
and results are analyzed. The specifications of
machines (type A, B, C) are listed in Table 1,
in which “Estimated power” is an estimation
score calculated via POPC++ runtime system.

The simulation scenario is based on
COST231-Munich (Universitat Karlshrue, n.
d.). In this scenario, the size (Nx, Ny, Nz) is equal
to (483, 683, 23) when the resolution is set to
5 meter. In order to analyze the results more
clearly, the ray-signal threshold is increased to
250 dB, which will increase the computation
complexity.

In order to assure a relative accurate timing
result, simulations are required to run several
times and the average results are adopted (Figure
9). A simulation on the Kerrighed (1998) that
is a distributed-shared-memory architecture is
displayed in Figure 8.

The running time is displayed in Figure 6
and its corresponding speedup is displayed in
Figure 7. It is observed that multi-threaded
simulation generally dominates the single-
threaded (the number of parallel objects is one)
because the resources are more efficiently
utilized by the system. However, when the
number of threads increases, the performance
has reached the peak and tends to degrade,
which is limited by physical resources and
possibly the resource competition tends to oc-
cur more often.

Figure 9. Test parallelization efficiency

International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011 15

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

The running time can be greatly shortened
by increasing the number of processors (the
node specification can be found in Table 2) at
the beginning. However, performance may
degrade due to the unavoidable overhead for
each object to load data and sends results at the
end of calculations when more and more pro-
cessors are used. It has been observed that for
some scenarios, the job distributed to each

object is small and each object is capable of
handling it even (because of cache hit in local
memory). In this case, a super linear speed up
may be observed.

It is also interesting to find that with two
or three processors, multithreading may out-
perform distributed POPC++; which is mainly
due to the overhead of communication or pro-

Table 2. Specification

Type CPU (GHz) Estimated Power Cores RAM (G) OS

A (C) 3.0 5419 4 12 Fedora 10

B 2.5 4812 2 4 Ubuntu 9

Table 3. Running time of components

Components Running Time (s) Percentage (%)

LOS 1.3 9.5

VD 2.9 21.1

HRD 8.6 62.8

Post-processing 0.9 6.6

Figure 10. Communication cost via parallelization

16 International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

cessor idling time from unfair distribution of
jobs.

The running time of IRLA is greatly re-
duced by deploying parallel computation tasks
to available nodes (Figure 8). It is also interest-
ing to find that distributed memory is handled
by Kerrighed behind scenes so that all objects
created on the cluster virtually see a global large
memory space and they can share the same data
easily, which consume less memory (Figure 5).

The components of IRLA are of different
complexity. Experiments show that different
amount of time is spent on these components.
For example, given Munich scenario, the
running time for LOS, VD, HRD and post-
processing is listed in Table 3. Apparently, the
most time consuming parts are HRD and VD. It
can be derived that the overall maximum speed
for IRLA by parallelization is (based on the
percentages of these components in Table 3).

1

1 0 211 0 628
0 211 0 628

(. .)
. .

− − +
+
N

	

N is the number of processors used; when
N approaches infinity, the equation reaches
6.21. Each component can be further optimized
by pinpointing the most time-consuming part.
However, experiments show that usually the
speedup hardly approaches 6.21, which is
reasonable because of costly message-passing
and the overhead of loading data etc. Figure 7
show that the maximum speedup via Kerrighed
cluster (16 objects) is approximately 5, which
is far less than linear speedup. The explanations
are twofold. The first is due to communication
overhead that nodes have to send and collect
results. The second is due to unpredictable
amount of job tasks (rays distribution) and hence
the timing to finish sub-computation tasks at
each node is different, which incur barrier
synchronization waiting time. This varies from
scenario to scenario but at least this experiment
indicates the same speedup pattern observed
on the same scenario (Figure 7).

The communication overhead (measured
in Mega Bytes) decreases as the number of
parallel objects grows, Figure 10 indicates that
to some extent, when the number of processors
employed is high, the communication over-
head can be minimized to a constant because
the average data amount to be sent over the
network is split into small portions which can
be sent and received within a short time. Fur-
thermore, the total speedup has a limit because
of the aforementioned inherent parallelization
strategy of IRLA.

Conclusion

Ray launching is extremely time consuming in
large scenarios. Solving angular dispersion and
avoiding double counting have been proposed
in previous work. Intelligent algorithms have
been developed to accelerate the computation.
Parallelization has been focused in this article
where the issues related to performance etc are
described. The multithreading and POP-C++
version of IRLA was developed and speedup
was obtained (up to five times faster with sixteen
processors). Parallelization further reduces the
running time of IRLA and this can be further
extended to distributed grid environment (Lai,
Bessis, Zhang, & Clapworthy, 2007; Lai et al.,
2009) in the future work. By using POPC++
toolkit, computation tasks are deployed and
performance speedup can be observed. The
parallelization also helps to solve a more
complex problem which may not be solved on
a single computer, i.e., the memory may be a
restricting factor for some large scenarios on a
single computer.

Acknowledgment

This work was supported by the EU-FP7 iPLAN
and FP6 GAWIND under grant number MTKD-
CT-2006-042783 (“Marie Curie Fellowship for
Transfer of Knowledge”).

International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011 17

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

References

Bisseling, R. (2004). Parallel scientific computation:
A structured approach using BSP and MPI. New
York, NY: Oxford University Press.

Coco, S., Laudani, A., & Pollicino, G. (2009, March).
Grid-based prediction of electromagnetic fields in
urban environment. IEEE Transactions on Magnetics,
45, 1060–1063. doi:10.1109/TMAG.2009.2012577

Degli-Esposti, V., Fuschini, F., Vitucci, E., & Fal-
ciasecca, G. (2009). Speed-up techniques for ray
tracing field prediction models. IEEE Transactions
on Antennas and Propagation, 57, 1469–1480.
doi:10.1109/TAP.2009.2016696

Foster, I., & Kesselman, C. (2003). The grid2,
blueprint for a new computing infrastructure. San-
francisco, CA: Morgan Kaufmann.

Glassner, A. (1989). An introduction to ray tracing.
San Francisco, CA: Morgan Kaufmann.

Haslett, C. (2008). Essentials of radio wave propaga-
tion. Cambridge, UK: Cambridge University Press.

Kerrighed. (1998). What is Kerrighed? Retrieved
from http://www.Kerrighed.org

Lai, Z., Bessis, N., De La Roche, G., Kuonen, P.,
Zhang, J., & Clapworthy, G. (2009, November). A
new approach to solve angular dispersion of discrete
ray launching for urban scenarios. In Proceedings of
the Loughborough Antennas & Propagation Confer-
ence Leicestershire, UK (pp. 133-136).

Lai, Z., Bessis, N., De La Roche, G., Kuonen, P.,
Zhang, J., & Clapworthy, G. (2010, April). On the use
of an intelligent ray launching for indoor scenarios.
In Proceedings of the Fourth European Conference
on Antennas and Propagation, Barcelona, Spain.

Lai, Z., Bessis, N., De La Roche, G., Kuonen, P.,
Zhang, J., & Clapworthy, G. (2010, April). The
characterisation of human-body influence on 3.5
GHz indoor path loss measurement. In Proceedings of
the Second International Workshop on Planning and
Optimization of Wireless Communication Networks,
Barcelona, Spain (pp. 1-6).

Lai, Z., Bessis, N., De La Roche, G., Song, H., Zhang,
J., & Clapworthy, G. (2009, March). An intelligent
ray launching for urban propagation prediction. In
Proceedings of the Third European Conference on
Antennas and Propagation, Berlin, Germany (pp.
2867-2871).

Lai, Z., Bessis, N., Kuonen, P., De La Roche, G.,
Zhang, J., & Clapworthy, G. (2009, August). A
performance evaluation of a grid-enabled object-
oriented parallel outdoor ray launching for wireless
network coverage prediction. In Proceedings of the
Fifth International Conference on Wireless and Mo-
bile Communications, Cannes, France (pp. 38-43).

Lai, Z., Bessis, N., Zhang, J., & Clapworthy, G.
(2007, September). Some thoughts on adaptive
grid-enabled optimisation algorithms for wireless
network simulation and planning. In Proceedings of
the UK e-Science, All Hands Meeting, Nottingham,
UK (pp. 615-620).

Nagy, L., Dady, R., & Farkasvolgyi, A. (2009,
March). Algorithmic complexity of FDTD and ray
tracing method for indoor propagation modelling.
In Proceedings of the Third European Conference
on Antennas and Propagation, Berlin, Germany.

Nguyen, T. (2004). An object-oriented model for
adaptive high-performance computing on the com-
putational grid. Présentée à la faculté informatique
et communications, Zurich, Switzerland.

Nguyen, T., & Kuonen, P. (2007, January). Program-
ming the grid with POP-C++. Future Generation
Computer Systems, 23(1), 23–30. doi:10.1016/j.
future.2006.04.012

Rick, T., & Mathar, R. (2007, March). Fast edge-
diffraction based radio wave propagation model
for graphics hardware. In Proceedings of the 2nd
International ITG Conference (pp. 15-19).

Silberschatz, A., & Galvin, P. (2006). Operating
system concepts with java (7th ed.). New York, NY:
John Wiley & Sons.

Universitat Karlshrue. (n. d.). COST231 urban micro
cell measurements and building data. Retrieved
from http://www2.ihe.uni-karlsruhe.de/forschung/
cost231/cost231.en.html

Wolfle, G., Gschwendtner, B., & Landstorfer, F.
(1997, May). Intelligent ray tracing - a new ap-
proach for the field strength prediction in microcells.
In Proceedings of the IEEE Vehicular Technology
Conference, Phoenix, AZ (pp. 790-794).

Zhang, J., & De La Roche, G. (2010). Femtocells:
Technologies and deployment. New York, NY: John
Wiley & Sons. doi:10.1002/9780470686812

18 International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Zhihua Lai fi nished BSc (Honours, First Class) and Ph.D. in University of Bedfordshire in 	
2006 and 2010 respectively. He was also a visiting scholar at GRID and Ubiquitous Computing
Group, University of Applied Sciences of Fribourg, Switzerland in 2009 when he developed par-
allel distributed radiowave propagation models. His main research interests include radiowave
propagation modelling and distrbuted/parallel algorithms. He has published over 10 papers and
has been involved in a number of funded European projects in these areas.

Nik Bessis is currently a Head of Distributed and Intelligent Systems (DISYS) research group,
a Professor and a Chair of Computer Science in the School of Computing and Mathematics
at University of Derby, UK. He is also an academic member in the Department of Computer
Science and Technology at University of Bedfordshire (UK). He obtained a BA (1991) from the
TEI of Athens, Greece and completed his MA (1995) and PhD (2002) at De Montfort University
(Leicester, UK). His research interest is the analysis, research, and delivery of user-led develop-
ments with regard to trust, data integration, annotation, and data push methods and services in
distributed environments. These have a particular focus on the study and use of next generation
and grid technologies methods for the benefit of various virtual organizational settings. He is
involved in and leading a number of funded research and commercial projects in these areas.
Prof. Bessis has published widely and is the editor of three books and the Editor-in-Chief of the
International Journal of Distributed Systems and Technologies (IJDST). In addition, Prof. Bessis
is a regular reviewer and has served as a keynote speaker, conferences/workshops/track chair,
associate editor, session chair and scientific program committee member.

Guillaume De La Roche has been working as a research fellow at the Centre for Wireless Network
Design (CWiND), United Kingdom, since 2007. From 2001 to 2002 he was a research engineer
at Infineon, Munich, Germany. From 2003 to 2004 he worked in a small French company where
he deployed WiFi networks. From 2004 to 2007 he was with the CITI Laboratory at the National
Institute of Applied Sciences (INSA), France. He holds a Dipl-Ing from CPE Lyon, France, and
M.Sc. (2003) and Ph.D. (2007) degrees in wireless communications from INSA Lyon. He is a
co-author of the book Femtocells: Technologies and Deployment (Wiley, 2010).

Pierre Kuonen received a Master in Electrical Engineering from the Swiss Federal Institute of
Technology (EPFL) in 1982. After six years of experience in the industry, he joined the Com-
puter Science Theory Laboratory at EPFL in 1988 and began working in the field of parallel
and distributed computing. He received his Ph.D. in computer science from the EPFL in 1993.
Since 1994 he has worked regularly in the field of parallel and distributed computing. First at
EPFL where he founded and directed the GRIP (Group for Research in Parallel Computing)
and then at the University of Applied Sciences of Valais. Since 2003 he is full professor at the
University of Applied Sciences of Fribourg in he Information and Communication technologies
department (ICT), where he is leading the Grid & Ubiquitous Computing Group. Since 1993,
besides his teaching activity, he was constantly involved in national or international research
projects particularly for applications in the field of telecommunications or wave propagation.

International Journal of Distributed Systems and Technologies, 2(2), 1-19, April-June 2011 19

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Jie Zhang is Professor of Wireless Communications and Networks at the Department of Com-
puter Science and Technology, University of Bedfordshire (UoB), UK. He received his MEng
and PhD degrees from the Department of Automatic Control and Electronic Engineering, East
China University of Science and Technology, Shanghai, China. From 1997 to 2002, he was a
Research Fellow with University College London, Imperial College London, and Oxford Uni-
versity. He is the founding Director of the Centre for Wireless Network Design, which is one of
the best-funded and leading research groups in wireless network design and femtocell research
in Europe. Since 2003, he has been awarded more than 19 projects worth over ￡4.0 million
(his share). He has published over 120 journal and conference papers, and is a lead author of
the first technical book on femtocells - “Femtocells: Technologies and Deployment”, which was
published by Wiley in Jan. 2010.

Gordon J. Clapworthy received a BSc (Hons., Class 1) in Mathematics and a PhD in Aeronautical
Engineering from the University of London, and an MSc, with Distinction, in Computer Science
from The City University, London. He is a Professor of Computer Graphics in the Department of
Computer Science & Technology and Head of the Centre for Computer Graphics & Visualiza-
tion (CCGV) at the University of Bedfordshire, UK. His interests include medical visualisation,
computer animation, biomechanics, virtual reality, surface modelling, and fundamental computer
graphics algorithms. Clapworthy has published over 150 refereed articles and has been involved
in 25 international projects in recent years, mostly funded by the European Commission; he
coordinated 8 of these. He is a member of the ACM, ACM SIGGRAPH and Eurographics.

